Volume 7, Issue 4 (2018)                   JFST 2018, 7(4): 271-277 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sotoudeh E, Bahadori R, Habibi H, Naseri Fard I. Dietary Supplementation of Manganese Sulfate Nanoparticles and its Influence on Growth Performance, Hematology and Blood Biochemistry of Rainbow Trout (Oncorhynchus mykiss Walbaum 1792) . JFST 2018; 7 (4) :271-277
URL: http://jfst.modares.ac.ir/article-6-31265-en.html
1- Fisheries Department, Agriculture & Natural Resources Faculty, Persian Gulf University, Bushehr, Iran , E.sotoudeh@pgu.ac.ir
2- Fisheries Department, Agriculture & Natural Resources Faculty, Persian Gulf University, Bushehr, Iran
3- Animal Husbandry Department, Agriculture & Natural Resources Faculty, Persian Gulf University, Bushehr, Iran
Abstract:   (6803 Views)
The present study was conducted to assess the influence of dietary manganese sulfate nanoparticles on the growth performance, hematology, and blood biochemistry of rainbow trout (Oncorhynchus mykiss). 240 rainbow trout with an average initial weight of 0.8±0.1gr distributed into four treatments with three replicates and were fed with four diets including a control diet (without manganese), Mn-M (containing 10mg/kg manganese sulfate), Mn-N10 (containing 10mg/kg nano manganese), Mn-N15 (containing 15mg/kg nano manganese) for 6 weeks. The fish were hand-fed to satiation four times daily. At the end of the experiment, the average final weight of fish fed diets containing nano Manganese were significantly higher compared to control treatment (p<0.05), however, there was no significant difference compared to the group fed with manganese sulfate (p>0.05). Condition factor (CF) in juveniles fed diets containing Mn sulfate nanoparticles did not show a significant difference compared to those fed with manganese sulfate (Mn-M; p>0.05). The levels of hemoglobin (Hb) in fish fed Mn-N10 diet was significantly higher than fish fed with the control diet. Fish fed diets Mn-N10 and Mn-N15 showed higher plasma albumin compared to the control and Mn-M diets. In general, the results of this study showed that dietary supplementation of manganese sulfate nanoparticles compared to manganese sulfate had no significant impact on growth performance, hematological and biochemical composition of rainbow trout.
Full-Text [PDF 846 kb]   (3239 Downloads)    
Article Type: Original Research | Subject: Nutrition and Feed Technology
Received: 2018/09/12 | Published: 2018/12/20

References
1. Sugiura SH, Babbitt JK, Dong FM, Hardy RW. Utilization of fish and animal by‐product meals in low‐pollution feeds for rainbow trout Oncorhynchus mykiss (Walbaum). Aquac Res. 2000;31(7):585-93. [Link] [DOI:10.1046/j.1365-2109.2000.00476.x]
2. FAO. National aquaculture sector overview fact sheets [Internet]. Rome: FAO Fisheries and Aquaculture Department; 2016 [Cited 13 May 2016]. Available from: http://www.fao.org/fishery/countrysector/naso_iran/en. [Link]
3. Amar EC, Kiron V, Satoh S, Watanabe T. Enhancement of innate immunity in rainbow trout (Oncorhynchus mykiss Walbaum) associated with dietary intake of carotenoids from natural products. Fish Shellfish Immunol. 2004;16(4):527-37. [Link] [DOI:10.1016/j.fsi.2003.09.004]
4. Watanabe T, Kiron V, Satoh Sh. Trace minerals in fish nutrition. Aquaculture. 1997;151(1-4):185-207. [Link] [DOI:10.1016/S0044-8486(96)01503-7]
5. Lovell T. Nutrition and Feeding of Fish. NewYork: Springer; 1998. [Link] [DOI:10.1007/978-1-4615-4909-3]
6. Lall SP, Milley JE. Impact of aquaculture on aquatic environment: Trace minerals discharge. In: Schelegel P, Durosoy S, Jongbloed AW, editors. Trace elements in animal production systems. Wageningen: Wageningen Academic Publishers; 2008. 203-14. [Link]
7. Antony Jesu Prabhu P, Schrama JW, Kaushik SJ. Mineral requirements of fish: A systematic review. Rev Aquac. 2016;8(2):172-219. [Link] [DOI:10.1111/raq.12090]
8. Grosell M. The role of the gastrointestinal tract in salt and water balance. In: Grosell M, Farrell AP, Brauner CJ, editors. Fish physiology: The multifunctional gut of fish Fish physiology. 30th Volume. Cambridge: Academic Press; 2010. pp. 135-64. [Link] [DOI:10.1016/S1546-5098(10)03004-9]
9. Hurley LS, Keen CL. Manganese. In: Underwood E, Mertz W, editors. Trace elements in human and animal nutrition. Cambridge: Academic Press; 1987. pp. 185-223. [Link] [DOI:10.1016/B978-0-08-092468-7.50010-7]
10. Lall SP. The minerals. In: Halver JE, Hardy RW, editors. Fish nutrition. 3rd Edition. Cambridge MA: Academic Press; 2003. pp. 259-308. [Link] [DOI:10.1016/B978-012319652-1/50006-9]
11. Li SF, Luo XG, Lu L, Crenshaw TD, Bu YQ, Liu B, et al. Bioavailability of organic manganese sources in broilers fed high dietary calcium. Anim Feed Sci Technol. 2005;123-124(Pt 2):703-15. [Link] [DOI:10.1016/j.anifeedsci.2005.04.052]
12. Knox D, Cowey CB, Adron JW. The effect of low dietary manganese intake on rainbow trout (Salmo gairdneri). Br J Nutr. 1981;46(3):495-501. [Link] [DOI:10.1079/BJN19810058]
13. Tacon AGJ. The nutrition and feeding of farmed fish and shrimp-a training manual, part 1: The essential nutrients. Brasilia: FAO; 1987. [Link]
14. National Research Council, Division on Earth and Life Studies, Board on Agriculture and Natural Resources, Committee on the Nutrient Requirements of Fish and Shrimp. Nutrient requirements of fish and shrimp. Washington DC: The National Academies Press; 2011. [Link]
15. Nassiri Moghaddam H, Danesh Masgaran M, Jahanian Najafabadi H, Jahanian Najafabadi R. Determination of chemical composition, mineral contents, and protein quality of Iranian kilka fish meal. Int J Poult Sci. 2007;6(5):354-61. [Link] [DOI:10.3923/ijps.2007.354.361]
16. Batal AB, Dale NM, Saha UK. Mineral composition of corn and soybean meal. J Appl Poult Res. 2010;19(4):361-4. [Link] [DOI:10.3382/japr.2010-00206]
17. Ye CX, Tian LX, Yang HJ, Liang JJ, Niu J, Liu YJ. Growth performance and tissue mineral content of juvenile grouper (Epinephelus coioides) fed diets supplemented with various levels of manganese. Aquac Nutr. 2009;15(6):608-14. [Link] [DOI:10.1111/j.1365-2095.2008.00628.x]
18. Pan L, Zhu X, Xie S, Lei W, Han D, Yang Y. Effects of dietary manganese on growth and tissue manganese concentrations of juvenile gibel carp, Carassius auratus gibelio. Aquac Nutr. 2008;14(5):459-63. [Link] [DOI:10.1111/j.1365-2095.2007.00550.x]
19. Lorentzen M, Maage A, Julshamn K. Manganese supplementation of a practical, fish meal based diet for Atlantic salmon parr. Aquac Nutr. 1996;2(2):121-5. [Link] [DOI:10.1111/j.1365-2095.1996.tb00019.x]
20. Sharma J, Langer S. Effect of manganese on haematological parameters on fish, Garra gotyla gotyla. J Entomol Zool Stud. 2014;2(3):77-81. [Link]
21. Rather MA, Sharma R, Aklakur M, Ahmad S, Kumar N, Khan M, et al. 2011. Nanotechnology: A novel tool for aquaculture and fisheries development, a prospective mini-review. Fish Aquac J. 2011;2011:FAJ-16. [Link]
22. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263(5153):1600-3. [Link] [DOI:10.1126/science.8128245]
23. Wang Y, Yan X, Fu L. Effect of selenium nanoparticles with different sizes in primary cultured intestinal epithelial cells of crucian carp, Carassius auratus gibelio. Int J Nanomedicine. 2013;8:4007-13. [Link] [DOI:10.2147/IJN.S43691]
24. Behera T, Swain P, Rangacharulu PV, Samanta M. Nano-Fe as feed additive improves the hematological and immunological parameters of fish, Labeo rohita H. Appl Nanosci. 2014;4(6):687-94. [Link] [DOI:10.1007/s13204-013-0251-8]
25. Zhou X, Wang Y, Gu Q, Li W. Effects of different dietary selenium sources (selenium nanoparticle and selenomethionine) on growth performance, muscle composition and glutathione peroxidase enzyme activity of crucian carp (Carassius auratus gibelio). Aquaculture. 2009;291(1-2):78-81. [Link] [DOI:10.1016/j.aquaculture.2009.03.007]
26. Fenaroli F, Westmoreland D, Benjaminsen J, Kolstad T, Skjeldal FM, Meijer AH, et al. Nanoparticles as drug delivery system against tuberculosis in zebrafish embryos: Direct visualization and treatment. ACS Nano. 2014;8(7):7014-26. [Link] [DOI:10.1021/nn5019126]
27. Ashouri S, Keyvanshokooh S, Parviz Salati A, Johari SA, Pasha Zanoosi H. Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio). Aquaculture. 2015;446:25-9. [Link] [DOI:10.1016/j.aquaculture.2015.04.021]
28. Ghobadi Sh, Rajabi Eslami H, Hosseinifard SM, Palangi L. Survey on effects of different levels of nano iron on growth and nutrition performance in rainbow trout (Oncorhynchus mykiss). J Breed Aquac Sci. 2014;1(1):67-82. [Persian] [Link]
29. Mohammadi Z, Rajabi Islami H. Effect of manganese oxide nanoparticle on growth performance and blood cells of rainbow trout (Oncorhynchus mykiss Walbaum 1792) fingerlings. Iran Sci Fish J. 2016;25(3):199-215. [Persian] [Link]
30. Sotoudeh E, Amiri Moghaddam J, Shahhosseini GR, Aramli MS. Effect of dietary gamma-irradiated and fermented soybean meal on the growth performance, body composition, and digestive enzymes activity of Caspian brown trout, Salmo trutta caspius, juvenile. J World Aquac Soc. 2016;47(6):830-42. [Link] [DOI:10.1111/jwas.12297]
31. Velíšek J, Svobodová Z, Piačková V. Effects of clove oil anaesthesia on rainbow trout (Oncorhynchus mykiss). Acta Veterinaria Brno. 2005;74:139-46. [Link] [DOI:10.2754/avb200574010139]
32. Blaxhall PC, Daisley KW. Routine hematological methods for use with fish blood. J Fish Biol. 1973;5(6):771-81. [Link] [DOI:10.1111/j.1095-8649.1973.tb04510.x]
33. Shahbazi P, Maleknia N. General biochemistry. Tehran: University of Tehran Press; 1996. pp. 104-87. [Persian] [Link]
34. Nguyen VT, Satoh Sh, Haga Y, Fushimi H, Kotani T. Effect of zinc and manganese supplementation in Artemia on growth and vertebral deformity in red sea bream (Pagrus major) larvae. Aquaculture. 2008;285(1-4):184-92. [Link] [DOI:10.1016/j.aquaculture.2008.08.030]
35. 35- Tan XY, Xie P, Luo Z, Lin HZ, Zhao YH, Xi WQ. Dietary manganese requirement of juvenile yellow catfish Pelteobagrus fulvidraco, and effects on whole body mineral composition and hepatic intermediary metabolism. Aquaculture. 2012; 326-329:68-73. [Link] [DOI:10.1016/j.aquaculture.2011.11.013]
36. Izquierdo MS, Ghrab W, Roo J, Hamre K, Hernández-Cruz CM, Bernardini G, Terova G, et al. Organic, inorganic and nanoparticles of Se, Zn and Mn in early weaning diets for gilthead seabream (Sparus aurata; Linnaeus, 1758). Aquac Res. 2017;48(6):2852-67. [Link] [DOI:10.1111/are.13119]
37. Acosta E. Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci. 2009;14(1):3-15. [Link] [DOI:10.1016/j.cocis.2008.01.002]
38. Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, De Heer C, et al. Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol. 2009;53(1):52-62. [Link] [DOI:10.1016/j.yrtph.2008.10.008]
39. Liu K, Ai QH, Mai KS, Zhang WB, Zhang L, Zheng SX. Dietary manganese requirement for juvenile cobia, Rachycentron canadum L. Aquac Nutr. 2013;19(4):461-7. [Link] [DOI:10.1111/j.1365-2095.2012.00979.x]
40. Khajeh GH, Peyghan R. Evaluation of some blood serum biochemical parameters of rainbow trout (Oncorhynchus mykiss) cultured in earthen ponds. J Vet Res. 2007;62(3):197-203. [Persian] [Link]
41. Shahidi Yasaghi SA, Mazandarani M, Ghorbani Hasan Saraei A, Ghorbani R, Soleimani N. Determination of normal values of some blood serum factors (Electrolyte and non electrolyte) of Acipenser persicus. J Fish. 2008;2(1):25-32. [Persian] [Link]
42. Baruthio F, Guillard O, Arnaud J, Pierre F, Zawislak R. Determination of manganese in biological materials by electrothermal atomic absorption spectrometry: A review. Clin Chem. 1988;34(2):227-34. [Link]
43. Shaw BJ, Handy RD. Physiological effects of nanoparticles on fish: A comparison of nanometals versus metal ions. Environ Int. 2011;37(6):1083-97. [Link] [DOI:10.1016/j.envint.2011.03.009]
44. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76-83. [Link] [DOI:10.1016/j.biotechadv.2008.09.002]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.