Journal of Fisheries Science and Technology

Journal of Fisheries Science and Technology

Effect of Water-Soluble Polysaccharides Extracted from Microalge (Spirulina platensis) on Growth Performance, Body Composition and Immune Response of Rainbow Trout (Oncorhynchus mykiss)

Document Type : Original Research

Authors
Tarbiat Modares University
Abstract
This experiment evaluated the effect of soluble polysaccharides in Spirulina platensis microalgae on growth performance, body composition and immune response of rainbow trout (Oncorhynchus mykiss). In this regard, 180 rainbow trout (17.22 ± 0.5g) were selected and distributed in five experimental treatments (with three replications). Treatments included different levels of polysaccharide in dosage of 0 (control), 500, 1000, 2000 and 3000 mg / kg of feed. According to the results, in growth factors (final weight, body weight gain, specific growth factor, protein efficiency, feed conversion ratio and condition factor), no significant difference was observed. The highest and the lowest amount of carcass proteins were observed in the diet containing 500 mg polysaccharide and control, which showed a significant difference. The amount of fatty acids of the muscle of the fish body did not show any significant difference among the treatments. The highest and lowest levels of lysozyme activity were observed in treatments of 2,000 mg polysaccharide and control and the highest and lowest levels of complement activity were observed in treatments containing 3000 mg polysaccharide and control respectively (P <0.05). In general, the use of polysaccharide extracted from micro-algae did not significantly improve rainbow trout growth, but a slight improvement in growth and body composition (protein) in 500 mg polysaccharide per kg of diet was observed. In terms of safety indicators, treatments of 2,000 and 3,000 mg of polysaccharides per kg of diet had a good performance and could be used whenever needed.
Keywords

Subjects


1- Reverter M., Bontemps N., Lecchini D., Banaigs B., Sasal P., 2014: Use of Plant Extracts in Fish Aquaculture as an Alternative to Chemotherapy: Current Status and Future Perspectives, Aquaculture, 433: 50-61.
2- Sinyakov M. S., Dror M., Zhevelev H. M., Margel S., Avtalion R. R. 2002. Natural Antibodies and Their Significance in Active Immunization and Protection Against a Eefined Pathogen in Fish, Vaccine, 20(31): 3668-3674.
3- Hashim R., Mat-Saat N. A. 1992. The Utilization of Seaweed Meals as Binding Agents in Pelleted Feeds for Snakehead (Channa striatus) Fry and Their Effects on Growth, Aquaculture, 108(3): 299-308.
4- Wijesinghe W. A. J. P., Jeon Y. J. 2012. Biological Activities and Potential Industrial Applications of Fucose Rich Sulfated Polysaccharides and Fucoidans Isolated from Brown Seaweeds: A review, Carbohydrate Polymers, 88(1): 13-20.
5- Habib M. A. B., Parvin M., Huntington T. C., Hasan M. R., 2008: A Review on Culture, Production and Use of Spirulina as Food for Humans and Feeds for Domestic Animals and Fish, Food and Agriculture Organization of the United Nation.
6- Ajayan K. V., Selvaraju M. 2011. Reflector Based Chlorophyll Production by Spirulina platensis Through Energy Save Mode, Bioresource Technology, 102(16): 7591-7594.
7- Minkova K. M., Tchernov A. A., Tchorbadjieva M. I., Fournadjieva S. T., Antova R. E., Busheva M. C. 2003. Purification of C-Phycocyanin from Spirulina (Arthrospira) fusiformis, Journal of Biotechnology, 102(1): 55-59.
8- Jaime-Ceballos B. J., Hernández-Llamas A., Garcia-Galano T., Villarreal H. 2006. Substitution of Chaetoceros muelleri by Spirulina platensis Meal in Diets for Litopenaeus schmitti larvae, Aquaculture, 260(1): 215-220.
9- Goksan T., Zekeriyaoglu A., Ak İ. 2007. The Growth of Spirulina platensis in Different Culture Systems Under Greenhouse Condition, Turkish Journal of Biology, 31(1): 47-52.
10- Volkmann H., Imianovsky U., Oliveira J. L. B., Sant'Anna E. S. 2008. Cultivation of Arthrospira (Spirulina) platensis in Desalinator Wastewater and Salinated Synthetic Medium: Protein Content and Amino-Acid Profile, Brazilian Journal of Microbiology, 39(1): 98-101.
11- Kim E. K., Choi G. G., Kim H. S., Ahn C. Y., Oh H. M. 2012. Increasing γ-linolenic Acid Content in Spirulina platensis Using Fatty Acid Supplement and Light–Dark Illumination, Journal of Applied Phycology, 24(4): 743-750.
12- Rodrigues J. A. G., Vanderlei E. de S. O., Bessa É. F., Magalhães F. de A., Paula R. C. M. de, Lima V., Benevides N. M. B. 2011. Anticoagulant Activity of a Sulfated Polysaccharide Isolated from the Green Seaweed Caulerpa cupressoides, Brazilian Archives of Biology and Technology, 54(4): 691-700.
13- Cumashi A., Ushakova N. A., Preobrazhenskaya M. E., D’Incecco A., Piccoli A., Totani L., Tinari N., Morozevich G. E., Berman A. E., Bilan M. I., Usov A. I., Ustyuzhanina N. E., Grachev A. A., Sanderson C. J., Kelly M., Rabinovich G. A., Iacobelli S., Nifantiev N. E. 2007. A Comparative Study of the Anti-Inflammatory, Anticoagulant, Antiangiogenic, and Antiadhesive Activities of Nine Different Fucoidans from Brown Seaweeds, Glycobiology, 17(5): 541-552.
14- Zubia M., Fabre M.S., Kerjean V., Lann K. Le., Stiger-Pouvreau V., Fauchon M., Deslandes E. 2009. Antioxidant and Antitumoural Activities of Some Phaeophyta from Brittany Coasts, Food Chemistry, 116(3): 693-701.
15- Pezeshk, F., Babaei, S., Abedian Kenari, A., Hedayati, M., Naseri, M. 2018. The effect of supplementing diets with extracts derived from three different species of macroalgae on growth, thermal stress resistance, antioxidant enzyme activities and skin colour of electric yellow cichlid
(Labidochromis caeruleus). Aquacult Nutr. 2018; 00:1–8.
16- Li, H., Mao, W., Zhang, X., Qi, X., Chen, Y., Chen, Y., Li, N. 2011. Structural characterization of an anticoagulant-active sulfated polysaccharide isolated from green alga Monostroma latissimum. Carbohydrate Polymers, 85(2) 394-400.
17- Hebb C. D., Castell J. D., Anderson D. M., Batt J. 2003. Growth and Feed Conversion of Juvenile Winter Flounder (Pleuronectes americanus) in Relation to Different Protein-to-Lipid Levels in Isocaloric Eiets, Aquaculture, 221(1): 439-449.
18- F.A.O. 2020. FishstatJ, FishStatJ-Software for fishery and aquaculture statistical time series, FAO Fish. Div. [Online], Rome. Updat. 22 (2020).
19- Statistical Yearbook of Iranian Fisheries. 2019. Publications of Iran Fisheries Organization. 64p.
20- Tabarsa, M., Lee, S. J., You, S. 2012. Structural analysis of immunostimulating sulfated polysaccharides from Ulva pertusa. Carbohydrate research, Vol. 361, pp. 141-147.
21- Dubois M., Gilles K. A., Hamilton J. K., Roberts P. A., Smith F. 1956. Phenol Sulphuric Acid Method for Carbohydrate Determination, Analytical Chemistry, 28: 350-359.
22- Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951. Protein Measurement with the Folin Phenol Reagent, Journal of Biological Chemistry, 193(1): 265-275.
23- Abedian Kenari A., Sotoudeh E., Rezaei M. H., 2011: Dietary Soybean Phosphatidylcholine Effects Growth Performance and Lipolytic Enzyme Activity in Caspian Brown Trout (Salmo trutta Caspius) Alevin, Aquaculture Research, 42(5): 655-663.
24- National Research Council (NRC) .2011. In: (ed) Nutrient requirements of fish and shrimp. The National Academies Press, Washington, DC.
25- AOAC. 1990. Official Methods of Analysis, 15th ed. Association of Official Analytical Chemists, Arlington, VA.
26- Folch J., Lees M., Sloane-Stanley G. H. 1957. A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, Journal of Biological Chemistry, 226(1): 497-509.
27- Metcalf L. D., Schmitz A. A. 1961. Boron-Trifluoride Method for the Derivitisation of Fatty Acids, Analytical Chemistry, 33(3): 363-370.
28- Demers, N.E., Bayne, C.J. 1997. The immediate effects of stress on hormones and plasma lysozyme in rainbow trout. Dev Comp Immunol 21:363–373.
29- Amar E. C., Kiron V., Satoh S., Okamoto N., Watanabe T. 2000. Effects of Dietary β-Carotene on the Immune Response of Rainbow Trout Oncorhynchus mykiss, Fisheries Science, 66(6): 1068-1075.
30- Aramli M. S., Kamangar B., Nazari R. M. 2015. Effects of Dietary β -Glucan on the Growth and Innate Immune Response of Juvenile Persian Sturgeon, Acipenser persicus, Fish and Shellfish Immunology, 47(1): 606-610.
31- Sivagnanavelmurugan, M., Thaddaeus, B.J., Palavesam, A., Immanuel, G. 2014. Dietary effect of Sargassum wightii fucoidan to enhance growth, prophenoloxidase gene expression of Penaeus monodon and immune resistance to Vibrio parahaemolyticus. Fish & Shellfish Immunology, 39 (2) 439-449.
32- Traifalgar, R. F., Serrano, A. E., CoRRE, V., Kira, H., Tung, H. T., Michael, F. R., Koshio, S. 2009. Evaluation of dietary fucoidan supplementation effects on growth performance and vibriosis resistance of Penaeus monodon postlarvae. Aquaculture Science, Vol. 57(2), pp. 167-174.
33- Safavi, S.V., Abedian Kenari, A., Tabarsa M., Esmaeili, M. 2019. Effect of sulfated polysaccharides extracted from marine macroalgae (Ulva intestinalis and Gracilariopsis persica) on growth erformance, fatty acid profile, and immune response of rainbow trout (Oncorhynchus mykiss). Journal of Applied Phycology 31:4021–4035.
34- Kermani P., Babaei S., Abedian Kenari A., Hedayati M. 2020. Growth performance, plasma parameters and liver antioxidant enzymes activities of Rainbow trout (Oncorhynchus mykiss) juvenile fed on Spirulina platensis extract. Iranian Journal of Fisheries Sciences, 19 (3) 1463-1478.
35- Kiessling, A., Johansson, L., Storebakken, T. 1989. Effects of reduced feed ration levels on fat content and fatty acid composition in white and red muscle from rainbow trout. Aquaculture, 79 (1-4) 169-175.
36- Hixson, S. M., Parrish, C. C., Anderson, D. M. 2014. Changes in tissue lipid and fatty acid composition of farmed rainbow trout in response to dietary camelina oil as a replacement of fish oil. Lipids, 49(1), pp.97-111.
37- Sargent, J. R., Tocher, D. R., Bell J. G., 2002. The lipids. Fish nutrition,Vol. 3, pp. 181-257.
38- Millamena, O. M., Bautista-Teruel, M. N., Kanazawa, A. 1996. Methionine requirement of juvenile tiger shrimp Penaeus monodon Fabricius. Aquaculture, 143(3-4) 403-410.
39- Kinsella, J. E., Shimp, J. L., Mai, J., Weihrauch, J. 1977. Fatty acid content and composition of freshwater finfish. Journal of the American Oil Chemists’ Society, Vol.54(10), pp.424-429.
40- Connor, W. E. 2000. Importance of n− 3 fatty acids in health and disease. The American journal of clinical nutrition, Vol. 71(1), pp. 171S-175S.
41- Sakai, M. 1999. Current research status of fish immunostimulants. Aquaculture, 172(1), 63-92.
42- Gopalakannan A., Arul V. 2010. Enhancement of the Innate Immune System and Disease‐Resistant Activity in Cyprinus carpio by Oral Administration of β‐Glucan and Whole Cell Yeast, Aquaculture Research, 41(6): 884-892.
43- Paredes M., Gonzalez K., Figueroa J., Montiel-Eulefi E. 2013. Immunomodulatory Effect of Prolactin on Atlantic Salmon (Salmo salar) Macrophage Function. Fish Physiology and Biochemistry, 39(5): 1215-1221.
44- Teruya, T., Tatemoto, H., Konishi., T. Tako, M. 2009. Structural characteristics and in vitro macrophage activation of acetyl fucoidan from Cladosiphon okamuranus. Glycoconj J 26:10–19
45 Jiao, G., Yu, G., Zhang, J., Ewart, H. 2011. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 9: 196–223.