Journal of Fisheries Science and Technology

Journal of Fisheries Science and Technology

Application of ultrasound in extracting astaxanthin from banana shrimp (Fenneropenaeus merguiensis) and investigating its antioxidant properties

Document Type : Original Research

Authors
1 Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor
2 Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University
Abstract
The aim of this study was to extract astaxanthin from banana shrimp (Fenneropenaeus merguiensis) using ultrasound assisted method and to investigate its antioxidant properties. Extraction with organic acetone solvent was performed by soaking on a magnetic stirrer at room temperature for 5, 10, and 15 minutes, as well as neutralization tests of DPPH and ABTS free radicals. Fe3+ ion reduction was carried out. One-way analysis of variance was used for statistical analysis of the data. The best astaxanthin yield was 79.5±0.012 µg/g in the conditions of 20 minutes of magnetic stirrer at ambient temperature with 400 watts of ultrasound for 10 minutes, and the lowest average yield was observed in the condition of 15 minutes of magnetic stirrer at ambient temperature with 400 watts of ultrasound with a time of 15 minutes with a value of 69.3±0.049 µg/g. The findings of all three ABTS, DPPH, and Fe3+ ion reduction tests revealed that the settings were 20 minutes of magnetic stirrer at ambient temperature followed by 10 minutes of 400 watts of ultrasound. In summary, the results of this study demonstrated that using ultrasound for a shorter period of time has a better effect, while increasing the time diminishes the yield and antioxidant qualities.
Keywords

Subjects


1. IMARC. (2020). Shrimp market: global industry trends, share, size, growth, opportunity and 990 forecasts.
2. Amiguet, E., Moortèle, B.V.D., Cordier, P., Hilairet, N., and Reynard, B. (2012). Deformation mechanisms and rheology of serpentines in experiments and in nature. Journal of Geophysical Research: Solid Earth, 119, pp.4640–4655.
3. Kaur, S. and Dhillon, G.S. (2013). Recent trends in biological extraction of chitin from marine shell wastes; a review. Critical Reviews in Biotechnology, 35(1), pp. 44-61.
4. Cheong, J.Y., Muskhazli, M., Nor Azwady, A.B., Ahmad, S.A. and Adli, A.A. (2020). Three-dimensional optimisation for the enhancement of astaxanthin recovery from shrimp shell wastes by Aeromonas hydrophila. Biocatalysis and Agricultural Biotechnology, 27, pp.101649.
5. Galasso, C., Corinaldesi, C., and Sansone, C. (2017). Carotenoids from Marine Organisms: Biological Functions and Industrial Applications. Biological Functions and Industrial Applications. Antioxidants, 6(4), 96.
6. Ambati, R.R., Moi, P.S., Ravi, S. and Aswathanarayana, R.G. (2014). Review Astaxanthin: sources, extraction, stability, biological activitiesand its commercial applications. Marine Drugs, 12(1), pp.128–152.
7. Kuan, A.T., Phelps, J.S., Thomas, L.A., Nguyen, T.M., Han, J., Chen, CL., Azevedo, A.W., Tuthill, J.C.,Funke, J., Cloetens, P., Pacureanu, A., and Lee, W.C.A. (2020). Dense neuronal reconstruction through X-ray holographic nano-tomography. Nature Neuroscience, 23, pp.1637-1643.
8. Davinelli, S., Nielsen, M.E., Scapagnini, G. (2018). Astaxanthin in skin health, repair and disease: a comprehensive review. Nutrients, 10, pp.522–534.
9. Brotosudarmo, T.H.P., Limantara, L., Setiyono, E. and Heriyanto, L. (2020). Structures of astaxanthin and their consequences for therapeutic application: review article. International Journal of Food Science, 23(6), pp.1-16.
10. Kishimoto, K., Kouzai, Y., Kaku, H., Shibuya, N., Minami, E., and Nishizawa, Y. (2010). Perception of the chitin oligosaccharides contributes to disease resistance to blast fungus. Magnaporthe oryzae in rice, 64(2), pp. 343–354.
11. Leung, P. and Engle, C. (2006). Shrimp culture economics, market, and trade. Blackwell Publishing, Oxford.
12. Sourinejad, L., Kalbassi, M.R., and Martinez, P. (2014). Mixed milt fertilization of endangered Caspian brown trout Salmo trutta caspius influences effective population size of breeder. Iranian Journal of Fisheries Sciences, 14(2), pp. 393-408.
13. Lee, S.Y., Show, P.L., Ling, T.C. and Chang, J.S. (2018). Single-step disruption and protein recovery from Chlorella vulgaris using ultrasonication and ionic liquid buffer aqueous solutions as extractive solvents. Biochemical Engineering Journal, 124, pp.26-35.
14. Saini, R.K., and Keum, Y.S. (2018). Carotenoid extraction methods: A review of recent developments. Food Chemistry, 240, pp.90–103.
15. Delgado-Vargas, F., Jimenez, A.R., Paredes-Lopez, O. (2000). Natural pigments: Carotenoids, anthocyanins, and betalains - Characteristics, biosynthesis, processing, and stability, Crit. Rev. Food Sci. Nutr. 40 (3), pp.173–289.
16. Wang, M., Yuan, W., Jiang, X., Jing, Y. and Wang, Z. (2014). Disruption of microalgal cells using high frequency focused ultrasound. Bioresource Technology, 153, pp.315-321.
17. Chemat, F., Rombaut, N., Meullemiestre, A., Turk, M., Perino, S., FabianoTixier, A.S. and Vian, M.A. (2017). Review Ultrasound assisted extraction of food and natural products. Mechanisms, techniques,combinations, protocols and applications. Ultrason Sonochem, 34, pp.540-560.
18. Gao, J., You, J., Kang, J., Nie, F., Ji, H. and Liu, S. (2020). Recovery of astaxanthin from shrimp (Penaeus vannamei) waste by ultrasonic assisted extraction using ionic liquid in water microemulsion. Food Chemistry, 325, pp.126850.
19. Sharayei, P., Azarpazhooh, E., Zomorodi, S., Einafshar, S. and Ramaswamy, H.S. (2020). Optimization of ultrasonic assisted extraction of astaxanthin from green tiger (Penaeus semisulcatus) shrimp shell. Ultrasonics Sonochemistry, 76, pp.105666.
20. Jiang, H.L., Yang, J.L., and Shi, Y.P. (2016). Optimization of ultrasonic cell grinder extraction of anthocyanins from blueberry using response surface methodology. Ultrasonics Sonochemistry, 34, pp.325-331.
21. Sachindra, N.M., Bhaskar, N. and Mahendrakar, N.S. (2006). Recovery of carotenoids from shrimp waste in organic solvents. Waste Manage, 26, pp.1092–1098.
22. Brand-Williams, W., Cuvelier, M.E. and Berset, C.L.W.T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), pp.25-30.
23. Borazjani, N.J., Tabarsa, M., You, S. and Rezaei, M. (2017). Effects of extraction methods on molecular characteristics, antioxidant properties and immunomodulation of alginates from Sargassum angustifolium. International journal of biological macromolecules, 101, pp.703-71.
24. Chew, Y.L., Lim, Y.Y., Omar, M. and Khoo, K.S. (2008). Antioxidant activity of three edible seaweeds from two areas in South East Asia. LWT-Food Science and Technology, 41(6), pp.1067-1072.
25. Vimala, S., and Paul, V.I. (2009). Utilization of crustacean fishery waste as a source of carotenoids. J. Exp. Zool. Ind, 12(2), pp.377-380.
26. Xu, Y., and Pan, S. (2013). Effects of various factors of ultrasonic treatment on the extraction yield of all-trans-lycopene from red grapefruit (Citrus paradise Macf.), Ultrason. Sonochem, 20 (4), pp.1026–1032.
27. Zhang H, Tang B, Row KH. (2014). A green deep eutectic solventbased ultrasound-assisted method to extract astaxanthin from shrimp byproduct. Analytical Letters 47: 742–749.
28. Liu, X., Osawa, T. (2007). Cis astaxanthin and especially 9-cis astaxanthin exhibits a higher antioxidant activity in vitro compared to the all-trans isomer. Biochem. Biophys. Res. Commun., 357, pp.187–193.
29. Holanda, H.D.D., Netto, F.M. (2006). Recovery of components fromshrimp (Xiphopenaeus kroyeri) processing waste by enzymatic hydrolysis. J. Food Sci., 71(5), pp.298-303.
30. Yolmeh, M., Najafi, M.B.H. and Farhoosh, R., (2014). Optimisation of ultrasound-assisted extraction of natural pigment from annatto seeds by response surface methodology (RSM). Food chemistry, 155, pp.319-324.
31. Tsiaka, T., Zoumpoulakis, P., Sinanoglou, V., Makris, C., Heropoulos, G., and Calokerinos, A. (2015). Response surface methodology toward the optimization of high-energy carotenoid extraction from Aristeus antennatus shrimp, Anal. Chim, 877, pp.100–110.
32. Zhao, L., Zhao, G., Chen, F., Wang, Z., Wu, J., and Hu, X. (2006). Different effects of microwave and ultrasound on the stability of (all-E)-astaxanthin, J. Agric. Food Chem, 54(21), pp.8346–8351
33. Jaeschke, D.P., Rech, R., Marczak, L.D.F., and Mercali, G.D. (2017). Ultrasound as analternative technology to extract carotenoids and lipids from Heterochlorella luteoviridis, Bioresour. Technol, 224, pp.753–757.
34. Solva, A.K.N., Rddrogues, B.D., Solva, L.H.M., Rddrogues, A.M.C. (2018). Drying and extraction of astaxanthin from pink shrimp waste (Farfantepenaeus subtilis): the applicability of spouted beds. Food Sci Technol, 38, pp.454-461
35. Dalei, J., and Sahoo, D. (2015). Extraction and Characterization of Astaxanthin from the Crustacean Shell Waste from Shrimp Processing Industries. Int J Pharm Sci Res 2015; 6(6), pp.2532-2537.
36. Oancea, S., Grosu, C., Ketney, O., and Stoia, M. (2013). Conventional and ultrasound-assisted extraction of anthocyanins from blackberry and sweet cherry cultivars. Acta Chimica Slovenica, 60(2), pp.383-389.
37. Entezari, M.H., and Kruus, P. (1996). Effect of frequency on sonochemical reactions II. Temperature and intensity effects, Ultrason. Sonochem, 3, pp.19–24.
38. Lou, Z., Wang, H., Zhang, M., and Wang, Z. (2010). Improved extraction of oil from chickpea under ultrasound in a dynamic system, J. Food Eng, 98, pp.13–18.
39. Chintong, Sutasinee; Phatvej, Wipaporn; Rerk-Am, Ubon; Waiprib, Yaowapha; Klaypradit, Wanwimol (2019). In Vitro Antioxidant, Antityrosinase, and Cytotoxic Activities of Astaxanthin from Shrimp Waste. Antioxidants, 8(5), pp.128.
40. Yuan, C., Du, L., Jin, Z., and Xu, X. (2013). Storage stability and antioxidant activity of complex of astaxanthin with hydroxypropyl-β-cyclodextrin. Carbohydrate polymers, 91(1), pp.385-389.
41. Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of agricultural and food chemistry, 53(6), pp.1841-1856.
42. Saini, R.K., and Keum, Y.S. (2017). Carotenoid extraction methods: a review of recent developments, Food Chem, 200, pp.81–86.
43. Sowmya, R., and Sachindra, N.M. (2012). Evaluation of antioxidant activity of carotenoid extract from shrimp processing by products by in vitro assays and in membrane model system. Food Chem., 134, pp.308–314.
44. Sindhu, S., Sherief, P. (2011). In Extraction, characterization, antioxidant and anti-inflammatory properties of carotenoids from the shell waste of arabian red shrimp Aristeus alcocki, ramadan 1938. Open Conf. Proc. J., 2, pp.95–103.