Journal of Fisheries Science and Technology

Journal of Fisheries Science and Technology

Extraction of Glycosaminoglycan from the Mixture of Head and Backbone Byproduct of Rainbow Trout (Oncorhynchus mykiss) Processing Using Alkaline Solubilization Method

Document Type : Original Research

Authors
1 Department of Fisheries, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University
2 Professor in Department of Fisheries, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University
3 Associate Professor in Department of Fisheries, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University
4 Department of Biology and Biological Sciences, Faculty of Food Science and Nutrition, Chalmers University of Technology
Abstract
In recent decades, the aquaculture industry has experienced a growing trend. In this regard, rainbow trout (Oncorhynchus mykiss) is known as one of the most popular species in the world and in Iran, with Iran ranking first in the production of this fish with an annual production of about 237,710 tons. After processing this fish, about 30% of it is considered as processing residue, which includes head, bone, viscera, etc. In the present study, a mixture of minced head and backbone waste from this fish was used to extract glycosaminoglycan using the alkaline dissolution method. The results showed that the extraction yield, carbohydrate, sulfate, uronic acid and protein content of the extracted glucosamine-glycan sample were 1.96 ± 0.14, 59.67 ± 3.66, 10.19 ± 0.38, 7.76 ± 0.20 and 11.23 ± 1.43%, respectively. Additionally, the infrared spectroscopy (FTIR) analysis of the obtained sample indicated the presence of broad peaks in the range of 3200 to 3600 cm-1 and 2700 to 3000 cm-1, corresponding to the functional groups –OH and the stretching band C-H, and the bending band of sulfate S=O at 1245 cm -1. Furthermore, the stretching band of the functional group COO-, related to the presence of uronic acid in the extracted sample, was observed in the range of 1480 to 1640 cm -1. The peaks appearing at 1385 and 11450 cm -1 were related to the stretching band O-C=O and the stretching vibration –CO in the COOH group.
Keywords

Subjects


[1] Abbas Zamani, Saeed Khalaji, The evaluation of bacterial single cell protein on performance, digestive enzymes activity, gut histology and gut microbiota of rainbow trout (Oncorhynchus mykiss) fry, J. Fish. Sci. Technol. 13 (2024) 398–411. https://doi.org/10.31857/S0044452920010052.
[2] H.A.J. and H.G.K. Seyed Hamed Masoumi, Hossein Adineh*, Mohammad Harsij, Effects of garlic extract (Allium sativum) in the diet of rainbow trout (Oncorhynchus mykiss) reared in the recirculating aquaculture system: growth performance, immune response and water quality, J. Fish. Sci. Technol. 12 (2023) 322–334.
[3] FAO, World Fisheries and Aquaculture, FAO:Rome,2022, (2022) 1–11.
[4] P. Ideia, J. Pinto, R. Ferreira, L. Figueiredo, V. Spínola, P.C. Castilho, Fish Processing Industry Residues: A Review of Valuable Products Extraction and Characterization Methods, Waste and Biomass Valorization (2019). https://doi.org/10.1007/s12649-019-00739-1.
[5] P. Anais, P.-G. Raul, B. Jean-Pascal, By-products from Fish Processing: Focus on French Industry, Util. Fish Waste (2013) 1–25.
[6] M. Nikoo, J.M. Regenstein, F. Noori, S. Piri Gheshlaghi, Autolysis of rainbow trout (Oncorhynchus mykiss) by-products: Enzymatic activities, lipid and protein oxidation, and antioxidant activity of protein hydrolysates, Lwt 140 (2021) 110702. https://doi.org/10.1016/j.lwt.2020.110702.
[7] T.K.M. M, S. B, O.S. M, Influence of Different Extraction Methods on Chemical Components of Oil Obtained from By-products of Tuna Canning Factories, J. Fish. Sci. Technol. 7 (2018) 157–165. https://jfst.modares.ac.ir/article-6-14400-fa.html.
[8] K. Arima, H. Fujita, R. Toita, A. Imazu-Okada, N. Tsutsumishita-Nakai, N. Takeda, Y. Nakao, H. Wang, M. Kawano, K. Matsushita, H. Tanaka, S. Morimoto, A. Nakamura, M. Kitagaki, Y. Hieda, R. Hatto, A. Watanabe, T. Yumura, T. Okuhara, H. Hayashi, K. Shimizu, K. Nakayama, S. Masuda, Y. Ishihara, S. Yoshioka, S. Yoshioka, S. Shirade, J.I. Tamura, Amounts and compositional analysis of glycosaminoglycans in the tissue of fish, Carbohydr. Res. 366 (2013) 25–32. https://doi.org/10.1016/j.carres.2012.11.010.
[9] A. Nakamura, S. Masuda, Y. Ishihara, S. Morimoto, R. Toita, A. Imazu-Okada, N. Takeda, S.S.S.S. Yoshioka, H. Tanaka, J.I. Tamura, N. Tsutsumishita-Nakai, H. Hayashi, K. Shimizu, K. Matsushita, M. Kawano, K. Arima, A. Watanabe, T. Okuhara, K. Nakayama, R. Hatto, Y. Nakao, S.S.S.S. Yoshioka, H. Fujita, T. Yumura, Y. Hieda, S. Shirade, M. Kitagaki, H. Wang, R. Toita, A. Imazu-Okada, N. Tsutsumishita-Nakai, N. Takeda, Y. Nakao, H. Wang, M. Kawano, K. Matsushita, H. Tanaka, S. Morimoto, A. Nakamura, M. Kitagaki, Y. Hieda, R. Hatto, A. Watanabe, T. Yumura, T. Okuhara, H. Hayashi, K. Shimizu, K. Nakayama, S. Masuda, Y. Ishihara, S.S.S.S. Yoshioka, S.S.S.S. Yoshioka, S. Shirade, J.I. Tamura, Amounts and compositional analysis of glycosaminoglycans in the tissue of fish, Carbohydr. Res. 366 (2013) 25–32. https://doi.org/10.1016/j.carres.2012.11.010.
[10] W. Chen, Z. Jia, J. Zhu, Y. Zou, G. Huang, Y. Hong, Optimization of ultrasonic-assisted enzymatic extraction of polysaccharides from thick-shell mussel (Mytilus coruscus) and their antioxidant activities, Int. J. Biol. Macromol. 140 (2019) 1116–1125. https://doi.org/10.1016/j.ijbiomac.2019.08.136.
[11] M. Abdollahi, M. Rezaei, A. Jafarpour, I. Undeland, Sequential extraction of gel-forming proteins, collagen and collagen hydrolysate from gutted silver carp (Hypophthalmichthys molitrix), a biorefinery approach, Food Chem. 242 (2018) 568–578. https://doi.org/10.1016/j.foodchem.2017.09.045.
[12] S. Pezeshk, M. Rezaei, H. Hosseini, M. Abdollahi, Impact of pH-shift processing combined with ultrasonication on structural and functional properties of proteins isolated from rainbow trout by-products, Food Hydrocoll. 118 (2021) 106768. https://doi.org/10.1016/j.foodhyd.2021.106768.
[13] S. Naghdi, M. Rezaei, M. Abdollahi, M. Tabarsa, Enzymatic extraction of sulfated polysaccharide from the skin of rainbow trout (Oncorhynchus mykiss) and evaluation of its chemical, antioxidant and functional properties, Iran. Food Sci. Technol. Res. J. (2022).
[14] K. Dubois, K. Gilles, P. Hamilton, A. Rebers, F. Smith, Colorimetric Method for Determination of Sugars and Related Substances, Anal. Chem. 28 (1956) 350–356. https://doi.org/10.1021/ac60111a017.
[15] K.S. Dodgson, R.G. Price, A note on the determination of the ester sulphate content of sulphated polysaccharides, Biochem. J. 84 (1962) 106.
[16] C. Carpita, D. Ci, Measurement of Uranic Acids without from Neutral Sugars, 162 (1991) 157–162.
[17] N. Souissi, S. Boughriba, O. Abdelhedi, M. Hamdi, M. Jridi, S. Li, M. Nasri, Extraction, structural characterization, and thermal and biomedical properties of sulfated polysaccharides from razor clam Solen marginatus, RSC Adv. 9 (2019) 11538–11551. https://doi.org/10.1039/C9RA00959K.
[18] Y. Yuan, X. Xu, C. Jing, P. Zou, C. Zhang, Y. Li, Microwave assisted hydrothermal extraction of polysaccharides from Ulva prolifera: Functional properties and bioactivities, Carbohydr. Polym. 181 (2018) 902–910. https://doi.org/10.1016/j.carbpol.2017.11.061.
[19] M. Jridi, R. Nasri, Z. Marzougui, O. Abdelhedi, M. Hamdi, M. Nasri, Characterization and assessment of antioxidant and antibacterial activities of sulfated polysaccharides extracted from cuttlefish skin and muscle, Int. J. Biol. Macromol. 123 (2019) 1221–1228. https://doi.org/10.1016/j.ijbiomac.2018.11.170.
[20] F. Krichen, W. Karoud, A. Sila, B.E. Abdelmalek, R. Ghorbel, S. Ellouz-Chaabouni, A. Bougatef, Extraction, characterization and antimicrobial activity of sulfated polysaccharides from fish skins, Int. J. Biol. Macromol. 75 (2015) 283–289. https://doi.org/10.1016/j.ijbiomac.2015.01.044.
[21] M. Alboofetileh, M. Rezaei, M. Tabarsa, S. You, Bioactivities of Nizamuddinia zanardinii sulfated polysaccharides extracted by enzyme, ultrasound and enzyme-ultrasound methods, J. Food Sci. Technol. 56 (2019) 1212–1220. https://doi.org/10.1007/s13197-019-03584-1.
[22] S. Li, Q. Xiong, X. Lai, X. Li, M. Wan, J. Zhang, Y. Yan, M. Cao, L. Lu, J. Guan, Molecular modification of polysaccharides and resulting bioactivities, Compr. Rev. Food Sci. Food Saf. 15 (2016) 237–250.
[23] Q. Xiong, Z. Song, W. Hu, J. Liang, Y. Jing, L. He, X. Wang, S. Hou, T. Xu, J. Chen, D. Zhang, Methods of extraction , separation , purification , structural characterization for polysaccharides from aquatic animals and their major pharmacological activities, Crit. Rev. Food Sci. Nutr. 0 (2018) 1–16. https://doi.org/10.1080/10408398.2018.1512472.
[24] E. Balbinot-Alfaro, M. da Rocha, A. da T. Alfaro, V.G. Martins, Properties, bioactive potential and extraction processes of glycosaminoglycans: An overview, Cienc. Rural 51 (2021) 1–9. https://doi.org/10.1590/0103-8478cr20200821.
[25] M. Jridi, O. Abdelhedi, N. Zouari, N. Fakhfakh, M. Nasri, Development and characterization of grey triggerfish gelatin/agar bilayer and blend films containing vine leaves bioactive compounds, Food Hydrocoll. 89 (2019) 370–378. https://doi.org/10.1016/j.foodhyd.2018.10.039.
[26] S. Naghdi, M. Rezaei, M. Tabarsa, M. Abdollahi, Ultrasonic-assisted enzymatic extraction of sulfated polysaccharide from Skipjack tuna by-products, Ultrason. Sonochem. 95 (2023) 106385. https://doi.org/10.1016/j.ultsonch.2023.106385.
[27] O. Abdelhedi, R. Nasri, N. Souissi, M. Nasri, M. Jridi, Sulfated polysaccharides from common smooth hound: Extraction and assessment of anti-ACE, antioxidant and antibacterial activities, Carbohydr. Polym. 152 (2016) 605–614. https://doi.org/10.1016/j.carbpol.2016.07.048.
[28] Q. Huang, R. Chen, Y. Ding, S. Xiong, Preparation and properties of polysaccharide from Acipenser schrenckii skull, Food Sci. 30 (2009) 1–5.
[29] M. Jridi, M. Mezhoudi, O. Abdelhedi, S. Boughriba, W. Elfalleh, N. Souissi, R. Nasri, M. Nasri, Bioactive potential and structural characterization of sulfated polysaccharides from Bullet tuna (Auxis Rochei) by-products, Carbohydr. Polym. 194 (2018) 319–327. https://doi.org/10.1016/j.carbpol.2018.04.038.
[30] F. Krichen, W. Karaoud, N. Sayari, A. Sila, F. Kallel, S. Ellouz-Chaabouni, A. Bougatef, Sulfated Polysaccharides from Tunisian Fish Skins: Antioxidant, DNA Damage Protective Effect and Antihypertensive Activities, J. Polym. Environ. 24 (2016) 166–175. https://doi.org/10.1007/s10924-016-0759-6.
[31] H.M. Shang, H.Z. Zhou, R. Li, M.Y. Duan, H.X. Wu, Y.J. Lou, Extraction optimization and influences of drying methods on antioxidant activities of polysaccharide from cup plant (Silphium perfoliatum L.), PLoS One 12 (2017) 1–18. https://doi.org/10.1371/journal.pone.0183001.
[32] B.M. Khan, H.M. Qiu, X.F. Wang, Z.Y. Liu, J.Y. Zhang, Y.J. Guo, W.Z. Chen, Y. Liu, K.L. Cheong, Physicochemical characterization of Gracilaria chouae sulfated polysaccharides and their antioxidant potential, Int. J. Biol. Macromol. 134 (2019) 255–261. https://doi.org/10.1016/j.ijbiomac.2019.05.055.
[33] F. Grina, Z. Ullah, E. Kaplaner, A. Moujahid, R. Eddoha, B. Nasser, P. Terzioğlu, M.A. Yilmaz, A. Ertaş, M. Öztürk, A. Essamadi, In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical fingerprints of five Moroccan seaweeds, South African J. Bot. 128 (2020) 152–160. https://doi.org/10.1016/j.sajb.2019.10.021.
[34] Y.J. Cho, A.T. Getachew, P.S. Saravana, B.S. Chun, Optimization and characterization of polysaccharides extraction from Giant African snail (Achatina fulica) using pressurized hot water extraction (PHWE), Bioact. Carbohydrates Diet. Fibre (2019) 100179. https://doi.org/10.1016/j.bcdf.2019.100179.
[35] X.Y. Pan, Y.M. Wang, L. Li, C.F. Chi, B. Wang, Four antioxidant peptides from protein hydrolysate of red stingray (dasyatis akajei) cartilages: Isolation, identification, and in vitro activity evaluation, Mar. Drugs 17 (2019). https://doi.org/10.3390/md17050263.
[36] H. Qi, T. Zhao, Q. Zhang, Z. Li, Z. Zhao, R. Xing, Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta), J. Appl. Phycol. 17 (2005) 527–534. https://doi.org/10.1007/s10811-005-9003-9.
[37] L. Soua, M. Koubaa, F.J. Barba, J. Fakhfakh, H.K. Ghamgui, S.E. Chaabouni, Water-Soluble Polysaccharides from Ephedra alata Stems: Structural characterization, functional properties, and antioxidant activity, Molecules 25 (2020) 1–18. https://doi.org/10.3390/molecules25092210.
[38] A. Hamzaoui, M. Ghariani, I. Sellem, M. Hamdi, A. Feki, I. Jaballi, M. Nasri, I. Ben Amara, Extraction, characterization and biological properties of polysaccharide derived from green seaweed “Chaetomorpha linum” and its potential application in Tunisian beef sausages, Int. J. Biol. Macromol. 148 (2020) 1156–1168. https://doi.org/10.1016/j.ijbiomac.2020.01.009.