Volume 7, Issue 2 (2018)                   JFST 2018, 7(2): 81-86 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sabzi E, Mohammadi Azarm H, Salati A. Effect of Different Levels of L-carnitine on Growth Factors, Body Compositions, and Some Blood Biochemical Parameters of Fingerling Carp. JFST 2018; 7 (2) :81-86
URL: http://jfst.modares.ac.ir/article-6-15726-en.html
1- Fisheries Department, Marine Natural Resources Faculty, Khorramshar University of Marine Science & Technology, Khorramshahr, Iran
2- Fisheries Department, Marine Natural Resources Faculty, Khorramshar University of Marine Science & Technology, Khorramshahr, Iran , Azarmhamid@gmail.com
Abstract:   (9193 Views)
Aims: Efforts to reduce the feed conversion ratio, increase the rate of growth, and increase resistance to diseases are among the most important purposes of research on carp common carp. The aim of this study was to examine the effect of different levels of L-carnitine on growth factors, body compositions, and some blood biochemical parameters of fingerling carp (Cyprinus carpio).
Materials and Methods: The present experimental research was conducted on 90 fish for 8 weeks. The fish were randomly divided into 9 fiberglass tanks containing 300liters in 3 treatments and 3 replicates. Treatments consisted of 3 levels (0, 500, and 1000mg L-carnitine) and the fish were fed 3 times a day. Growth, morphometric, and nutritional parameters, as well as blood factors of the treatments were compared. The value of moisture, ash, protein, and fat in diet and body composition were determined by AOAC method; the data were analyzed by SPSS 16 software, using one-way ANOVA and Duncan test.
Findings: Different amounts of L-carnitine showed no significant difference in growth, but with increasing the levels of L-carnitine, an increasing trend was observed in improving feed conversion ratio. Value of protein and fat of body composition were increased and decreased, respectively, by 1000mg that was statistically different from the control group (p<0.05). Value of glucose and HDL increased and cholesterol and LDL decreased by 1000mg L-carnitine compared with the control group (p<0.05). L-carnitine had no significant effect on the level of triglyceride and hematocrit.
Conclusion: The addition of 1000mg L- carnitine/kg to common carp fingerlings diet improves the body composition and the function of blood parameters in the treated fish.
Full-Text [PDF 430 kb]   (3431 Downloads)    
Article Type: Research Article | Subject: fish and shellfish physiology
Received: 2017/02/15 | Published: 2018/08/14

References
1. Mast J, Buyse J, Godderis BM. Dietary L-carnitine supplementation increases antigen-specific immunoglobulin G in broiler chickens. Br J Nut. 2000;83(2):161-6. [Link]
2. Friedman SF, Fraenkel G. Reversible enzymatic acetylation of carnitine. Arch Biochem Biophys. 1955;59(2):491-501. [Link] [DOI:10.1016/0003-9861(55)90515-4]
3. Chatzifotis S, Takeuchi T, Seikai T. The effect of dietary L-carnitine on growth performance and lipid composition in red sea bream fingerlings. Fish Sci. 1995;61(6):1004-8. [Link] [DOI:10.2331/fishsci.61.1004]
4. Bilinski E, Jonas REE. Effect of coenzyme A and carnitine on fatty acid oxidation in rainbow trout mitochondria. J Fish Res Board Can. 1970;27(5):857-64. [Link] [DOI:10.1139/f70-093]
5. Ma JJ, Xu ZR, Shao QJ, Xu JZ, Hung SS, Hu WL, et al. Effect of dietary supplemntal L-carnitine on growth performance, body composition and antioxidant status in juvenile black sea beram, Sparus macrocephalus. Aquac Nutr. 2008;14(5):464-71. [Link] [DOI:10.1111/j.1365-2095.2007.00551.x]
6. Mohseni M, Ozório RO. Effects of dietary L-carnitine level on growth performance, body composition and antioxidant status beluga (HusohusoL. 1758). Aquac Nutr. 2014;20(5):477-85. [Link] [DOI:10.1111/anu.12100]
7. Schlechtriem C, Bresler V, Fishelson L, Rosenfeld M, Becker K. Protective effects of dietary L-Carnitine on tilapia hybrids (Oreochromisniloticus 9 Oreochromisaureus) reared under intensive pond-culture conditions. Aquac Nutr. 2004;10(1):55–63. [Link] [DOI:10.1046/j.1365-2095.2003.00283.x]
8. Ozorio R, Ginneken VV, Thillart GVD, Verstegen M, Verreth J. Dietary carnitine maintains energy reserves and delays fatigue of exercised African catfish (Clarias gariepinus ) fed high fat diets. Sci Agric. 2005;62(3):208-213. [Link] [DOI:10.1590/S0103-90162005000300002]
9. Mustafizur Rahman M. Role of common carp (Cyprinus carpio) in aquaculture production systems. Front Life Sci.2015;8(4):1-12. [Link]
10. Mohsin ABM, Islam MN , Hossain MA, Galib SM, Constraints and prospects of carp production in Rajshahi and Natore districts, Bangladesh. Univ j zool Rajshahi Univ. 2012;31(2012):69-7. [Link]
11. Kalbassi MR, Abdollahzadeh E, Salari-Joo H. A Review on aquaculture development in Iran. Ecopersia. 2013;1(2): 159-78. [Link]
12. Alishahi M, Soltani V, Mesbah M, Zargar A. The effect of immune stimulation and growth levamisole, Argus and three plant extracts in common carp (Cyprinuscarpio). Iran J Vet Res. 2012;67(2):135-42. [Persian] [Link]
13. Gopalakannan A, Arul V. Immunomodulatory effects of dietary intakes of chitin, chitosan and levamisole on the immune system of Cyprinus carpio and control of Aeromonas hydrophila infection in ponds. Aquaculture. 2006;255(1-4):179-87. [Link] [DOI:10.1016/j.aquaculture.2006.01.012]
14. Acerete L, Balasch JC, Espinnosa E, Josa A, Tort L. Physiological responses in Eurasian perch (Perca fluviatilis L.) subjected to stress by transport and handling. Aquaculture.2004;237(1-4):167–78. [Link] [DOI:10.1016/j.aquaculture.2004.03.018]
15. Hamza N, Mhetli M, Khemis IB, Cahu C, Kestemont P. Effect of dietary phospholipid levels on performance, enzyme activities and fatty acid composition of pikeperch (Sander lucioperca). Aquaculture. 2008;275(1-4):274-82. [Link] [DOI:10.1016/j.aquaculture.2008.01.014]
16. Denstadli V, Skrede A, Krogdahl A, Sahstrøm S, Storebakken T. Feed intake, growth, feed conversion, digestibility, enzyme activities and intestinal structure in Atlantic salmon (Salmo salar L.) fed graded levels of phytic acid. Aquac. 2006;256(1-4):365-76. [Link]
17. Misra CK, Das BK, Mukherje SC, Pattnaik P. Effect of multiple injections of b-glucan on non-specific immune response and disease resistance in Labeo rohita fingerlings. Fish Shellfish Immunol .2006;20(3):305-19. [Link] [DOI:10.1016/j.fsi.2005.05.007]
18. Mohanta KN, Mohanty SN, Jena JK, Sahu NP. Optimal dietary lipid level of silver barb, Puntius gonionotus fingerlings in relation to growth, nutrient retention and digestibility, muscle nucleic acid content and digestive enzyme activity. Aquac Nutr. 2008;14(4):350-9. [Link] [DOI:10.1111/j.1365-2095.2007.00542.x]
19. Bremer J. Carnitine metabolism and functions. Physiol Rev. 1983;63(4):1420-80. [Link] [DOI:10.1152/physrev.1983.63.4.1420]
20. Focken U, Becker K. Lawrence P. A note on the effects of 1-carnitine on the energy metabolism of individually reared carp, Cyprinus carpio L. Aquac Nutr.1997;3(4):261-4. [Link] [DOI:10.1046/j.1365-2095.1997.00044.x]
21. Keshavanath P, Renuka P. Effect of dietary L-carnitine supplements on growth and body composition of fingerling rohu, Labeorohita (Hamilton). Aquac Nutr. 1998;4(2):83-8. [Link] [DOI:10.1046/j.1365-2095.1998.00052.x]
22. Dias J, Arzel J, Corraze G. Kaushik SJ. Effects of dietary L -carnitine supplementation on growth and lipid metabolism in European seabass (Dicentrarchus labrax). Aquac Res. 2001;32(1):206–15. [Link] [DOI:10.1046/j.1355-557x.2001.00016.x]
23. Zhang Y, Ma Q, Bai X, Zhao L, Wang Q, Ji C, et al. Effects of dietary acetyl-L-carnitine on meat quality and lipid metabolism in Arbor Acres Broilers. Asian-Aust J Anim Sci. 2010;23(12):1639-44. [Link] [DOI:10.5713/ajas.2010.10168]
24. Lein TF, Horng YM. The effect of supplementary dietary L-carnitine on the growth performance, serum components, carcase traits and enzyme activities in relation to fatty acid beta-oxidation of broiler chickens. Br Poult Sci. 2001;42(1):92-5. [Link] [DOI:10.1080/713655014]
25. Griffin HD, Whitehead D. Plasma lipoprotein as an indicator of fatness in broiler: development and use a simple assay for plasma very low density lipoproteins. Br Poult Sci. 1982;23(4):307-13. [Link] [DOI:10.1080/00071688208447962]
26. Becker K. Focken U. Effect of feed supplementation with L-carnitine on growth, metabolism and body composition of carp (Cyprinus carpio L.). Aquac.1995; 129(1-4):341-3. [Link] [DOI:10.1016/0044-8486(95)91980-A]
27. Zhang Y, Ma Q, Bai X, Zhao L, Wang Q, Ji C, et al. Effects of dietary acetyl-L-carnitine on meat quality and lipid metabolism in Arbor Acres Broilers. Asian-Aust J Anim Sci. 2010;23(12):1639-44. [Link] [DOI:10.5713/ajas.2010.10168]
28. Lein TF, Horng YM. The effect of supplementary dietary L-carnitine on the growth performance, serum components, carcase traits and enzyme activities in relation to fatty acid beta-oxidation of broiler chickens. Br Poult Sci. 2001;42(1):92-5. [Link] [DOI:10.1080/713655014]
29. Griffin HD, Whitehead D. Plasma lipoprotein as an indicator of fatness in broiler: development and use a simple assay for plasma very low density lipoproteins. Br Poult Sci. 1982;23(4):307-13. [Link] [DOI:10.1080/00071688208447962]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.