Volume 7, Issue 3 (2018)                   JFST 2018, 7(3): 205-213 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sharifi E, JafarPour S, Hosseini S. Investigating the Effects of Biopolymer Concentration and Core Material Percentage on Quality Characteristics of Fish Oil Nanocapsules Containing Clove Essential Oil Prepared by Complex Coacervation Technique. JFST 2018; 7 (3) :205-213
URL: http://jfst.modares.ac.ir/article-6-15761-en.html
1- Fisheries Department, Animal Sciences & Fisheries Faculty, Sari Agricultural Sciences & Natural Resources University, Sari, Iran , Sharifi.elahe1370@gmail.com
2- Fisheries Department, Animal Sciences & Fisheries Faculty, Sari Agricultural Sciences & Natural Resources University, Sari, Iran
3- Food Industries Department, Agriculture Faculty, Shiraz University, Shiraz, Iran
Abstract:   (9755 Views)
Aims: Considering the unsaturated nature of fatty acids, the use of technologies to control its oxidation rate is essential for use in the food industry. Thereafter, the aim of this study was to investigate the effects of biopolymer concentration and core material percentage on quality characteristics of fish oil nanocapsules containing clove essential oil prepared by complex coacervation technique.
Materials and Methods: In the present experimental research, the effects of 3 independent variables including the total biopolymer percentage (gelatin-gum Arabic; 6, 8, and 10%), oil content (2 to 3%), and the concentration of clove essential oil (0, 2000, and 3000 ppm) on dependent variables such as size and zeta potential of particles, color, surface oil, encapsulation, and nanoencapsulation efficiency were evaluated. The present study was carried out as factorial experiment in a completely randomized design. One-way analysis of variance and Duncan test were used. The data were analyzed by SPSS 16 software.
Findings: The increase in total biopolymer percentage was associated with increasing particle size as it was in the range between 259.19±55.83 and 814.35±253.05 nm, respectively. In terms of color parameters, the yellowness of produced powders was increased by increasing the concentration of fish oil and cloves essential oil, while lightness was decreased by increasing the concentration of the biopolymer. Also, the superficial oil was increased by increasing oil and clove essential oil concentrations in the nanocapsules, and microencapsulation efficiency in different treatments was recorded between 65.1±2.75 in treatment 15 (10% biopolymer and 3% oil) to 98.84±0.78 in treatment 4 (8% biopolymer and 2% oil).
Conclusion: Using complex coacervation technique with gelatin-gum Arabic as a biopolymer can produce nano-sized particles.
Full-Text [PDF 531 kb]   (1729 Downloads)    
Article Type: Research Article | Subject: fish and shellfish physiology
Received: 2017/03/17 | Published: 2018/09/22

References
1. Simopoulos AP, Norman HA, Gillaspy JE, Duke JA. Common purslane: A source of Omega-3 fatty acids and antioxidants. J Am Coll Nutr. 1992;11(4):374-82. [Link] [DOI:10.1080/07315724.1992.10718240]
2. Eilander A, Hundscheid DC, Osendarp SJ, Transler C, Zock PL. Effects of n-3 long chain polyunsaturated fatty acid supplementation on visual and cognitive development throughout childhood: A review of human studies. Prostaglandins Leukot Essent Fatty Acids. 2007;76(4):189-203. [Link] [DOI:10.1016/j.plefa.2007.01.003]
3. Zhong Q, Tian H, Zivanovic S. Encapsulation of fish oil in solid zein particles by liquid‐liquid dispersion. J Food Process Preserv. 2009;33(2):255-70. [Link] [DOI:10.1111/j.1745-4549.2009.00390.x]
4. Miyashita K, Nara E, Ota T. Oxidative stability of polyunsaturated fatty acids in an aqueous solution. Biosci Biotechnol Biochem.1993;57(10):1638-40. [Link] [DOI:10.1271/bbb.57.1638]
5. Kaushik P, Dowling K, Barrow CJ, Adhikari B. Microencapsulation of Omega-3 fatty acids: A review of microencapsulation and characterization methods. J Funct Food. 2015;19(Pt B):868-81. [Link]
6. Baik MY, Suhendro EL, Nawar WW, Mc Clements DJ, Decker EA, Chinachoti P. Effects of antioxidants and humidity on the oxidative stability of microencapsulated fish oil. J Am Oil Chem Soc. 2004;81(4):355-60. [Link] [DOI:10.1007/s11746-004-0906-7]
7. Gan CY, Cheng LH, Easa AM. Evaluation of microbial transglutaminase and ribose cross-linked soy protein isolate-based microcapsules containing fish oil. Innov Food Sci Emerg Technol. 2008;9(4):563-9. [Link] [DOI:10.1016/j.ifset.2008.04.004]
8. Chang CP, Leung TK, Lin SM, Hsu CC. Release properties on gelatin-gum Arabic microcapsules containing camphor oil with added polystyrene. Colloid Surf B Biointerface. 2006;50(2):136-40. [Link] [DOI:10.1016/j.colsurfb.2006.04.008]
9. Zuidam NJ, Nedović V, editors. Encapsulation technologies for active food ingredients and food processing. Heidelberg: Springer; 2010. p. 25. [Link] [DOI:10.1007/978-1-4419-1008-0]
10. Julian Mc Clements D, Decker A. Encapsulated emulsions and methods of preparation [Internet]. Mountain View: Google Patents; 2005 [cited 2007 May 10]. Available from: https://patents.google.com/patent/EP1928589A2/en [Link]
11. Bahrani S, Ghanbarzadeh B, Hamishehkar H, Sowti Khiyabani M. Nanoencapsulation of Omega-3 fatty acids using caseinate-pectin based complexes: FTIR, DSC, particle size, and encapsulation efficiency. Iran J Nutr Sci Food Technol. 2013;8(3):1-15. [Persian] [Link]
12. Wu KG, Xiao Q. Microencapsulation of fish oil by simple coacervation of hydroxypropyl methylcellulose. Chin J Chem. 2005;23(11):1569-72. [Link] [DOI:10.1002/cjoc.200591569]
13. Jafarpour SA, Esfahani R, Jafari SM. 1395. Efficiency evaluation of nanoencapsulation of Omega-3 fatty acids with gelatin-Arabic gum complex using coaservation technique. Iran Sci Fish J. 2016;25(1):29-42. [Persian] [Link]
14. Wang B, Adhikari B, Barrow CJ. Optimisation of the microencapsulation of tuna oil in gelatin-sodium hexametaphosphate using complex coacervation. Food Chem. 2014;158:358-65. [Link] [DOI:10.1016/j.foodchem.2014.02.135]
15. Liu S, Low NH, Nickerson MT. Entrapment of flaxseed oil within gelatin-gum Arabic capsules. J Am Oil Chem Soc. 2010;87(7):809-15. [Link] [DOI:10.1007/s11746-010-1560-7]
16. Champagne CP, Fustier P. Microencapsulation for the improved delivery of bioactive compounds into foods. Curr Opin Biotechnol. 2007;18(2):184-90. [Link] [DOI:10.1016/j.copbio.2007.03.001]
17. Daniel AN, Sartoretto SM, Schmidt G, Caparroz-Assef SM, Bersani-Amado CA, Cuman RKN. Anti-inflammatory and antinociceptive activities A of eugenol essential oil in experimental animal models. Braz J Pharmacogn. 2009;19(1B):212-7. [Link] [DOI:10.1590/S0102-695X2009000200006]
18. Ogata M, Hoshi M, Urano S, Endo T. Antioxidant activity of eugenol and related monomeric and dimeric compounds. Chem Pharm Bull (Tokyo). 2000;48(10):1467-9. [Link] [DOI:10.1248/cpb.48.1467]
19. Guan W, Li S, Yan R, Tang S, Quan C. Comparison of essential oils of clove buds extracted with supercritical carbon dioxide and other three traditional extraction methods. Food Chem. 2007;101(4):1558-64. [Link] [DOI:10.1016/j.foodchem.2006.04.009]
20. Kazemi F. Effect of different drying methods and Essential method of obtaining on the essential qualitative and essential oil components Roman chamomile flowers [Dissertation]. Tehran: Tarbiat Modares University; 2002. [Persian] [Link]
21. Klinkesorn U, Sophanodora P, Chinachoti P, Decker EA, Julian Mc Clements D. Characterization of spray-dried tuna oil emulsified in two-layered interfacial membranes prepared using electrostatic layer-by-layer deposition. Food Res Int. 2006;39(4):449-57. [Link] [DOI:10.1016/j.foodres.2005.09.008]
22. Koocheki A, Kadkhodaee R, Mortazavi SA, Shahidi F, Taherian AR. Influence of Alyssum homolocarpum seed gum on the stability and flow properties of O/W emulsion prepared by high intensity ultrasound. Food Hydrocoll. 2009;23(8):2416-24. [Link] [DOI:10.1016/j.foodhyd.2009.06.021]
23. Klaypradit W, Huang YW. Fish oil encapsulation with chitosan using ultrasonic atomizer. LWT Food Sci Technol. 2008;41(6):1133-9. [Link] [DOI:10.1016/j.lwt.2007.06.014]
24. Jafari SM, Assadpoor E, He Y, Bhandari B. Encapsulation efficiency of food flavours and oils during spray drying. Dry Technol. 2008;26(7):816-35. [Link] [DOI:10.1080/07373930802135972]
25. Velasco J, Holgado F, Dobarganes C, Márquez-Ruiz G. Influence of relative humidity on oxidation of the free and encapsulated oil fractions in freeze-dried microencapsulated oils. Food Res Int. 2009;42(10):1492-500. [Link] [DOI:10.1016/j.foodres.2009.08.007]
26. Kolanowski W, Laufenberg G, Kunz B. Fish oil stabilisation by microencapsulation with modified cellulose. Int J Food Sci Nutr. 2004;55(4):333-43. [Link] [DOI:10.1080/09637480410001725157]
27. Drusch S, Berg S. Extractable oil in microcapsules prepared by spray-drying: Localisation, determination and impact on oxidative stability. Food Chem. 2008;109(1):17-24. [Link] [DOI:10.1016/j.foodchem.2007.12.016]
28. García E, Gutiérrez S, Nolasco H, Carreón L, Arjona O. Lipid composition of shark liver oil: Effects of emulsifying and microencapsulation processes. Eur Food Res Technol. 2006;222(5-6):697-701. [Link] [DOI:10.1007/s00217-005-0129-4]
29. Zhang Y, Tan C, Abbas S, Eric K, Xia S, Zhang X. Modified SPI improves the emulsion properties and oxidative stability of fish oil microcapsules. Food Hydrocoll. 2015;51:108-17. [Link] [DOI:10.1016/j.foodhyd.2015.05.001]
30. Jurado E, Bravo V, Camacho F, Vicaria JM, Fernández-Arteaga A. Estimation of the distribution of droplet size, interfacial area and volume in emulsions. Colloid Surf A Physicochem Eng Asp. 2007;295(1-3):91-8. [Link]
31. Azizanbari Ch, Ghanbarzadeh B, Hamishehkar H, Hosseini M. Gellan-Caseinate nanocomplexes as a carrier of Omega-3 fatty acids: Study of particle size, Rheological properties and Encapsulation efficiency. Food Process Preserv. 2014;5(2):19-42. [Persian] [Link]
32. Tadros T, Izquierdo P, Esquena J, Solans C. Formation and stability of nano-emulsions. Adv Colloid Interface Sci. 2004;108-109:303-18. [Link] [DOI:10.1016/j.cis.2003.10.023]
33. Xu D, Wang X, Jiang J, Yuan F, Gao Y. Impact of whey protein - beet pectin conjugation on the physicochemical stability of β-carotene emulsions. Food Hydrocoll. 2012;28(2):258-66. [Link] [DOI:10.1016/j.foodhyd.2012.01.002]
34. Alipour A, Koocheki A, Kadkhodaee R, Varidi M. The effect of Alyssum homolocarpum seed gum-whey protein concentrate on stability of oil-in-water emulsion. Food Sci Technol. 2015;12(48):163-74. [Persian] 37- Hosseini VS, Najaf Najafi M, Mohammadi Sani A, Koocheki A. Effect of Lallemantia royleana seed gum and whey protein concentrate on stability of oil-in-water emulsion. J Res Innov Food Sci Technol. 2013;2(2):109-20. [Persian] [Link]
35. Jindal M, Kumar V, Rana V, Tiwary AK. Physico-chemical, mechanical and electrical performance of bael fruit gum-chitosan IPN films. Food Hydrocoll. 2013;30(1):192-9. [Link] [DOI:10.1016/j.foodhyd.2012.05.027]
36. Moreau L, Kim HJ, Decker EA, Julian Mc Clements D. Production and characterization of oil-in-water emulsions containing droplets stabilized by β-lactoglobulin-pectin membranes. J Agric Food Chem. 2003;51(22):6612-7. [Link] [DOI:10.1021/jf034332+]
37. Hosseini VS, Najaf Najafi M, Mohammadi Sani A, Koocheki A. Effect of Lallemantia royleana seed gum and whey protein concentrate on stability of oil-in-water emulsion. J Res Innov Food Sci Technol. 2013;2(2):109-20. [Persian] [Link]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.