Volume 7, Issue 3 (2018)                   JFST 2018, 7(3): 215-222 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Movahedrad F, Hajimoradloo A, Zamani A, Kolangi H. Effect of dietary fish meal replacement by AquPro on growth performance, body composition and total protease activity of rainbow trout (Oncorhynchus mykiss) fry. JFST 2018; 7 (3) :215-222
URL: http://jfst.modares.ac.ir/article-6-16999-en.html
1- Fisheries Department, Fisheries & Environment Faculty, Gorgan University of Agricultural Science & Natural Resources, Golestan, Iran
2- Fisheries Department, Natural Resources & Environment Faculty, Malayer University, Hamedan, Iran , a.zamani@malayeru.ac.ir
Abstract:   (9383 Views)
Aims: In this study, the replacement effect of dietary fish meal with AquPro (Processed soybean meal) was assessed on growth performance, body composition and total protease activity of rainbow trout (Oncorhynchus mykiss) over a period of 6 weeks.
Materials and Methods: In this experimental study, at the beginning of the trial, 5 experimental diets were formulated with fish meal as control (A) and diets with 25% (B), 50% (C), 75% (D) and 100% (E) AquPro, respectively. At the end of the feeding trial, growth performance, body composition and total protease activity from pyloric caeca and intestine were measured.
Findings: The results indicated that the WG, SGR and ADG in experimental diet C were the highest and showed a significant difference with other treatments (p<0.05). However, the status index in experimental diet C was lower than other treatments, but did not show significant differences (p>0.05). The moisture content, fat, and body ash were respectively, significantly higher in experimental diets A, B and E than those of other treatments (p<0.05), But the highest amount of protein was observed in the experimental diet of C, which did not show any significant difference with other treatments (p>0.05). The highest total protease activity from pyloric caeca and the intestine was observed in the fish fed with diet C which showed a significant difference with other diets (p<0.05).
Conclusion: Based on the results of growth performance, body composition, and total protease activity was revealed that the diet containing 50% AquPro could be appropriate for rainbow trout growth.
Full-Text [PDF 699 kb]   (1408 Downloads)    
Article Type: Research Article | Subject: fish and shellfish physiology
Received: 2017/09/18 | Published: 2018/09/21

References
1. Jalili R, Agh N, Noori F, Imani A. Effects of replacing fish meal and fish oil with plant sources in the diet of rainbow trout (Oncorhynshus mykiss). J Fish. 2013;66(2):119-31. [Persian] [Link]
2. FAO Fisheries and Aquaculture Department. World aquaculture 2010 [Internet]. Rome: FAO; 2011 [cited 2016 May 15]. Available from: http://www.fao.org/docrep/014/ba0132e/ba0132e00.htm [Link]
3. Iranian Fisheries Organization. Shilat, annual report. 1st Edition. Ghorbanzade RA, Nazari S, editors. Gilan: Tasvir Gilan; 2015. [Link]
4. Alvarez JS, Hernández-Llamas A, Galindo J, Fraga I, García T, Villarreal H. Substitution of fishmeal with soybean meal in practical diets for juvenile white shrimp Litopenaeus schmitti (Pérez-Farfante & Kensley 1997). Aquac Res. 2007;38(7):689-95. [Link] [DOI:10.1111/j.1365-2109.2007.01654.x]
5. Barrows FT, Stone DAJ, Hardy RW. The effects of extrusion conditions on the nutritional value of soybean meal for rainbow trout (Oncorhynchus mykiss). Aquaculture. 2007;265(1-4):244-52. [Link] [DOI:10.1016/j.aquaculture.2007.01.017]
6. Leenhouwers JI, Ter Veld M, Verreth JAJ, Schrama JW. Digesta characteristiscs and performance of African catfish (Clarias gariepinus) fed cereal grains that differ in viscosity. Aquaculture. 2007;264(1-4):330-41. [Link] [DOI:10.1016/j.aquaculture.2007.01.003]
7. Ljubojević D, Radosavljević V, Puvača N, Živkov Baloš M, Đorđević V, Jovanović R, et al. Interactive effects of dietary protein level and oil source on proximate composition and fatty acid composition in common carp (Cyprinus carpio L.). J Food Compos Anal. 2015;37:44-50. [Link] [DOI:10.1016/j.jfca.2014.09.005]
8. Refstie S, Storebakken T, Baeverfjord G, Roem AJ. Long-term protein and lipid growth of Atlantic salmon (Salmo salar) fed diets with partial replacement of fish meal by soy protein products at medium or high lipid level. Aquaculture. 2001;193(1-2):91-106. [Link] [DOI:10.1016/S0044-8486(00)00473-7]
9. Drew MD. Canola protein concentrate as a feed ingredient for salmonid fish. Proceedings of the VII International Symposium on Aquaculture Nutrition, 16-19 Nov, 2004 Hermosillo, Sonora, Mexico. Uknown Publisher City: Uknown Publisher; 2004. [Link]
10. Ghobadi Sh, Matin Far A, Nezami Sh, Soltani M. Influence of supplementary enzymes Avizyme on fish meal replacement by soy bean meal and its effects on growth performance and survival rate of rainbow trout (Oncorhynchus mykiss). J Fish. 2009;3(2):11-22. [Persian] [Link]
11. National Research Council, Division on Earth and Life Studies, Board on Agriculture and Natural Resources, Committee on the Nutrient Requirements of Fish and Shrimp. Nutrient requirements of fish and shrimp. Washington DC: National Academies Press; 2011. [Link]
12. Storebakken T, Shearer KD, Baeverfjord G, Nielsen BG, Åsgård T, Scott T, et al. Digestibility of macronutrients, energy and amino acids, absorption of elements and absence of intestinal enteritis in Atlantic salmon, Salmo salar, fed diets with wheat gluten. Aquaculture. 2000;184(1-2):115-32. [Link] [DOI:10.1016/S0044-8486(99)00316-6]
13. Haghbayan S, Shamsaie M, Eila N, Abdollahtabar Y, Bozorgzadeh P, Rezaie D. Effects of dietary soybean meal (HP310) source on growth performance and blood parameters of rainbow trout (Oncorhynchus mykiss). J Fish. 2015;68(2):209-23. [Persian] [Link]
14. Vilhelmsson OT, Martin SA, Médale F, Kaushik SJ, Houlihan DF. Dietary plant-protein substitution affects hepatic metabolism in rainbow trout (Oncorhynchus mykiss). Br J Nutr. 2004;92(1):71-80. [Link] [DOI:10.1079/BJN20041176]
15. Tacon AGJ, Metian M, Hasan MR. Feed ingredients and fertilizers for farmed aquatic animals: Sources and composition [Internet]. Rome: Food and Agriculture Organization of The United Nations; 2009 [cited 2016 May 15]. Available from: http://www.fao.org/docrep/012/i1142e/i1142e00.htm [Link]
16. Adeli A, Baghaei F. Status of production and market of fishmeal on the aquaculture development. J Aquac Dev. 2016;10(3):137-49. [Persian] [Link]
17. National Research Council, Board on Agriculture, Subcommittee on Fish Nutrition. Nutrient requirements of fish. Washington DC: National Academies Press; 1993. [Link]
18. Hamza N, Mhetli M, Khemis IB, Cahu C, Kestemont P. Effect of dietary phospholipid levels on performance, enzyme activities and fatty acid composition of pikeperch (Sander lucioperca) larvae. Aquaculture. 2008;275(1-4):274-82. [Link] [DOI:10.1016/j.aquaculture.2008.01.014]
19. Piedecausa MA, Mazón MJ, García García B, Hernández MD. Effects of total replacement of fish oil by vegetable oils in the diets of sharpsnout seabream (Diplodus puntazzo). Aquaculture. 2007;263(1-4):211-9. [Link] [DOI:10.1016/j.aquaculture.2006.09.039]
20. AOAC. Official Method 950.89. In: AOAC, AOAC International. Official methods of analysis of AOAC International. 18th Edition. Horwitz W, Latimer GW, editors. Rockville: AOAC International; 2006. [Link]
21. Nayak J, Viswanathan Nair PG, Ammu K, Mathew S. Lipase activity in different tissues of four species of fish: Rohu (Labeo rohita Hamilton), oil sardine (Sardinella longiceps Linnaeus), mullet (Liza subviridis Valenciennes) and Indian mackerel (Rastrelliger kanagurta Cuvier). J Sci Food Agric. 2003;83(11):1139-42. [Link] [DOI:10.1002/jsfa.1515]
22. Walter HE. Proteinases: Methods with hemoglobin, casein and azocoll as substrates. In: Bergmeyer HU, editor. Methods of enzymatic analysis. 5th Volume. Deerfield Beach: Verlag Chemie; 1984. pp. 270-7. [Link]
23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-75. [Link]
24. Mamauag REP, Koshio S, Ishikawa M, Yokoyama S, Gao J, Nguyen BT, et al. Soy peptide inclusion levels influence the growth performance, proteolytic enzyme activities, blood biochemical parameters and body composition of Japanese flounder, Paralichthys olivaceus. Aquaculture. 2011;321(3-4):252-8. [Link] [DOI:10.1016/j.aquaculture.2011.09.022]
25. Palmegiano GB, Daprà F, Forneris G, Gai F, Gasco L, Guo K, et al. Rice protein concentrate meal as a potential ingredient in practical diets for rainbow trout (Oncorhynchus mykiss). Aquaculture. 2006;258(1-4):357-67. [Link] [DOI:10.1016/j.aquaculture.2006.04.011]
26. Drew MD, Borgeson TL, Thiessen DL. A review of processing of feed ingredients to enhance diet digestibility in finfish. Anim Feed Sci Technol. 2007;138(2):118-36. [Link] [DOI:10.1016/j.anifeedsci.2007.06.019]
27. Jalili R, Noori F, Agh N. Effects of dietary protein source on growth performance, feed utilization and digestive enzyme activity in rainbow trout (Oncorhynchus mykiss). J Appl Biol Sci. 2012;6(3):61-8. [Link]
28. Alboghbeish M, Mohammadi Azarm H, Yavari V, Zakeri M. Effect of fish meal replacement by soybean meal and baker's yeast on growth performance and feed utilization of juvenile Mesopotamichthys sharpeyi Gunther 1874. J Anim Res. 2015;28(2):136-45. [Persian] [Link]
29. Seyed Hasani MH, Mohseni M, Yazdani Sadati MA, Pourali HR, Shakorian M. Utilization of corn gluten meal as a protein source in great sturgeon (Huso huso) diets in growth up stage. Iran Sci Fish J. 2014;23(2):77-90. [Persian] [Link]
30. Liang D. Effect of supplementation on the nutritive value of canola meal for broiler chickens [Dissertation]. Winnipeg: University of Manitoba; 2000. [Link]
31. Krogdahl Å, Penn M, Thorsen J, Refstie, S, Bakke AM. Important antinutrients in plant feedstuffs for aquaculture: An update on recent finding regarding responses in salmonids. Aquac Res. 2010;41(3):333-44. [Link] [DOI:10.1111/j.1365-2109.2009.02426.x]
32. Hilton JW, Slinger SJ. Digestibility and utilization of canola meal in practical-type diets for rainbow trout (Salmo gairdneri). Can J Fish Aquat Sci. 1986;43(6):1149-55. [Link] [DOI:10.1139/f86-143]
33. Dumas A, De Lange CFM, France J, Bureau DP. Quantitative description of body composition and rates of nutrient deposition in rainbow trout (Oncorhynchus mykiss). Aquaculture. 2007;273(1):165-81. [Link] [DOI:10.1016/j.aquaculture.2007.09.026]
34. Robaina L, Moyano FJ, Izquierdo MS, Socorro J, Vergara JM, Montero D. Corn gluten and meat and bone meals as protein sources in diets for gilthead seabream (Sparus aurata): Nutritional and histological implications. Aquaculture. 1997;157(3-4):347-59. [Link] [DOI:10.1016/S0044-8486(97)00174-9]
35. Kissil GW, Lupatsch I. Successful replacement of fishmeal by plant proteins in diets for the gilthead seabream, Sparus aurata L. Isr J Aquac Bamidgeh. 2004;56(3):188-99. [Link]
36. Safari O, Bodaji F. Study of effect of partial substitution of canola meal and soybean meal with fishmeal in the diet of rainbow trout (Oncorhynshus mykiss). Pajouhesh va Sazandegi. 2008;21(2):45-51. [Persian] [Link]
37. Ribeiro L, Moura J, Santos M, Colen R, Rodrigues V, Bandarra N, et al. Effect of vegetable based diets on growth, intestinal morphology, activity of intestinal enzymes and haematological stress indicators in meagre (Argyrosomus regius). Aquaculture. 2015;447:116-28. [Link] [DOI:10.1016/j.aquaculture.2014.12.017]
38. Montero D, Izquierdo M. Welfare and health of fish fed vegetable oils as alternative lipid sources to fish oil. In: Turchini GM, Ng WK, Tocher DR, editors. Fish oil replacement and alternative lipid sources in aquaculture feeds. Boca Raton: CRC Press; 2010. pp. 439-85. [Link] [DOI:10.1201/9781439808634-c14]
39. Merrifield DL, Olsen RE, Myklebust R, Ringø E. Dietary effect of soybean (Glycine max) products on Gut histology and microbiota of fish, soybean and nutrition. In: El-Shemy H, editor. Soybean and nutrition. London: IntechOpen; 2011. [Link]
40. Baeverfjord G, Krogdahl A. Development and regression of soybean meal induced enteritis in Atlantic salmon, Salmo salar L., distal intestine: A comparison with the intestines of fasted fish. J Fish Dis. 1996;19(5):375-87. https://doi.org/10.1046/j.1365-2761.1996.d01-92.x [Link] [DOI:10.1111/j.1365-2761.1996.tb00376.x]
41. Santigosa E, Sánchez J, Médale F, Kaushik S, Pérez-Sánchez J, Gallardo MA. Modifications of digestive enzymes in trout (Oncorhynchus mykiss) and sea bream (Sparus aurata) in response to dietary fish meal replacement by plant protein sources. Aquaculture. 2008;282(1-4):68-74. [Link] [DOI:10.1016/j.aquaculture.2008.06.007]
42. Sotoudeh E, Amiri Moghaddam J, Shahhosseini GR, Aramli MS. Effect of dietary gamma-irradiated and fermented soybean meal on the growth performance, body composition, and digestive enzymes activity of Caspian brown trout, Salmo trutta caspius, juvenile. J World Aquac Soc. 2016;47(6):830-42. [Link] [DOI:10.1111/jwas.12297]
43. Ehsani J, Maniat M, Mohammadi Azarm H, Ghabtani A. Effects of partial substitution of dietary fish meal by fermented soybean meal on growth performance, body composition and activity of digestive enzymes of juvenile yellowfin sea bream (Acanthopagrus latus). J Mar Sci Technol. 2017;16(2):8-17. [Persian] [Link]
44. Francis G, S Makkar HP, Becker K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture. 2001;199(3-4):197-227. [Link] [DOI:10.1016/S0044-8486(01)00526-9]
45. Sandholm M, Smith RR, Shih JC, Scott ML. Determination of antitrypsin activity on agar plates: Relationship between antitrypsin and biological value of soybean for trout. J Nutr. 1976;106(6):761-6. [Link] [DOI:10.1093/jn/106.6.761]
46. Krogdahl Å, Lea TB, Olli JJ. Soybean proteinase inhibitors affect intestinal trypsin activities and amino acid digestibilities in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol Part A Physiol. 1994;107(1):215-9. [Link] [DOI:10.1016/0300-9629(94)90296-8]
47. Lin S, Mai K, Tan B, Liu W. Effects of four vegetable protein supplementation on growth, digestive enzyme activities, and liver functions of juvenile tilapia, Oreochromis niloticus×Oreochromis aureus. J World Aquac Soci. 2010;41(4):583-93. [Link] [DOI:10.1111/j.1749-7345.2010.00398.x]
48. Xu QY, Wang CA, Zhao ZG, Luo L. Effects of replacement of fish meal by soy protein isolate on the growth, digestive enzyme activity and serum biochemical parameters for Juvenile Amur sturgeon (Acipenser schrenckii). Asian Australas J Anim Sci. 2012;25(11):1588-94. [Link] [DOI:10.5713/ajas.2012.12192]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.