Volume 8, Issue 1 (2019)                   JFST 2019, 8(1): 39-49 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nourozifard P, Mortazavi S, Asad S, Hassanzadeh N. Toxic Elements Bioavailability from Total Amount in Persian Gulf Surface Sediments. JFST 2019; 8 (1) :39-49
URL: http://jfst.modares.ac.ir/article-6-29925-en.html
1- Environmental Department, Natural Recourses & Environmental Science Faculty, Malayer University, Malayer, Iran
2- Environmental Department, Natural Recourses & Environmental Science Faculty, Malayer University, Malayer, Iran , mortazavi.s@gmail.com
3- Biotechnology Department, College of Science, University of Tehran, Tehran, Iran
Abstract:   (4640 Views)
toxicology. Considering the specific conditions of the Persian Gulf and the impact of pollutants, the aim of the present study was to evaluation of toxic elements bioavailability from the total amount of surface sediments in the Persian Gulf.
Materials & Methods: In the present study, the total concentration and bioavailability fraction of copper, lead, zinc, cadmium, nickel, and chromium were measured at 14 coastal stations of Hormozgan province and Qeshm island. Nitric acid and perchloric acid were used to measuring the total concentration and K protease enzyme solution was used to measuring the bioavailable fraction. 
Findings: Zinc and chromium have the highest mean of total concentration, respectively. Qeshm island has more pollution than Hormozgan. The higher bioavailability and higher percentage of components were observed in lead and chromium than the other elements. With increasing concentrations of lead, chromium, and copper, the bioavailability of these elements also increased. As well as, zinc and nickel showed the lowest bioavailability. The concentration of copper, lead, and nickel was also higher than the sediments world average and the WHO / US EPA maximum, and the nickel concentration was above the ERM, PEL, and SEL.
Conclusion: Due to the low accuracy of determining the total concentration of metals in sediment toxicity for aquatics and the need to pay attention to bioavailability fraction, the probability of ecological risk of lead and chromium elements is higher than the other elements for aquatics of Persian Gulf. Zinc and nickel, have the lowest risk to the environment despite the high total concentration.
 
Full-Text [PDF 953 kb]   (1316 Downloads)    
Article Type: Original Research | Subject: Aquatic pollution and waste water management
Received: 2018/12/3 | Published: 2019/03/19

References
1. Mortuza MG, Al-Misned FA. Environmental contamination and assessment of heavy metals in water, sediments and shrimp of Red Sea Coast of Jizan, Saudi Arabia. J Aquat Pollut Toxicol. 2017;1(1):5. [Link]
2. Neyestani MR, Bastami KD, Esmaeilzadeh M, Shemirani F, Khazaali A, Molamohyeddin N, et al. Geochemical speciation and ecological risk assessment of selected metals in the surface sediments of the northern Persian Gulf. Mar Pollut Bull. 2016;109(1):603-11. [Link] [DOI:10.1016/j.marpolbul.2016.05.024]
3. Bastami KD, Afkhami M, Mohammadizadeh M, Ehsanpour M, Chambari Sh, Aghaei S, et al. Bioaccumulation and ecological risk assessment of heavy metals in the sediments and mullet Liza klunzingeri in the northern part of the Persian Gulf. Mar Pollut Bull. 2015;94(1-2):329-34. [Link] [DOI:10.1016/j.marpolbul.2015.01.019]
4. Abaychi JK, Douabul AA. Trace element geochemical associations in the Arabian Gulf. Mar Pollut Bull. 1986;17(8):353-6. [Link] [DOI:10.1016/0025-326X(86)90247-X]
5. Weber P, Behr ER, De Lellis Knorr C, Vendruscolo DS, Flores EMM, Dressler VL, et al. Metals in the water, sediment, and tissues of two fish species from different trophic levels in a subtropical Brazilian river. Microchem J. 2013;106:61-6. [Link] [DOI:10.1016/j.microc.2012.05.004]
6. Rosado D, Usero J, Morillo J. Ability of 3 extraction methods (BCR, Tessier and protease K) to estimate bioavailable metals in sediments from Huelva estuary (Southwestern Spain). Mar Pollut Bull. 2016;102(1):65-71. [Link] [DOI:10.1016/j.marpolbul.2015.11.057]
7. Benson NU, Udosen ED, Essien JP, Anake WU, Adedapo AE, Akintokun OA, et al. Geochemical fractionation and ecological risks assessment of benthic sediment-bound heavy metals from coastal ecosystems off the Equatorial Atlantic Ocean. Int J Sediment Res. 2017;32(3):410-20. [Link] [DOI:10.1016/j.ijsrc.2017.07.007]
8. Ansari TM, Marr IL, Tariq N. Heavy metals in marine pollution perspective-a mini review. J Appl Sci. 2004;4(1):1-20. [Link] [DOI:10.3923/jas.2004.1.20]
9. Zhao Sh, Feng Ch, Wang D, Liu Y, Shen Z. Salinity increases the mobility of Cd, Cu, Mn, and Pb in the sediments of Yangtze Estuary: Relative role of sediments' properties and metal speciation. Chemosphere. 2013;91(7):977-84. [Link] [DOI:10.1016/j.chemosphere.2013.02.001]
10. Ianni C, Bignasca A, Magi E, Rivaro P. Metal bioavailability in marine sediments measured by chemical extraction and enzymatic mobilization. Microchem J. 2010;96(2):308-16. [Link] [DOI:10.1016/j.microc.2010.05.003]
11. Isimekhai KA. Environmental risk assessment for an informal e-waste recycling site in Lagos State, Nigeria [Dissertation]. London: Middlesex University; 2017. [Link] [DOI:10.1007/s11356-017-8877-9]
12. Turner A. Enzymatic mobilisation of trace metals from estuarine sediment. Mar Chem. 2006;98(2-4):140-7. [Link] [DOI:10.1016/j.marchem.2005.08.007]
13. Turner A, Henon DN, Dale JLL. Pepsin-digestibility of contaminated estuarine sediments. Estuar Coast Shelf Sci. 2001;53(5):671-81. [Link] [DOI:10.1006/ecss.2001.0819]
14. Ruby MV, Davis A, Schoof R, Eberle S, Sellstone CM. Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ Sci Technol. 1996;30(2):422-30. [Link] [DOI:10.1021/es950057z]
15. Bignasca A, Ianni C, Magi E, Rivaro P. Using proteolytic enzymes to assess metal bioaccessibility in marine sediments. Talanta. 2011;86:305-15. [Link] [DOI:10.1016/j.talanta.2011.09.018]
16. Zarghami F, Biati A, Karbassi AR. Determination of heavy metals bonding in various sedimentary phases in Behshahr River and Abbas Abad dam. J Environ Sci Technol. 2017;19(5):287-97. [Persian] [Link]
17. Benson NU, Adedapo AE, Fred-Ahmadu OH, Williams AB, Udosen ED, Ayejuyo OO, et al. New ecological risk indices for evaluating heavy metals contamination in aquatic sediment: A case study of the Gulf of Guinea. Reg Stud Mar Sci. 2018;18:44-56. [Link] [DOI:10.1016/j.rsma.2018.01.004]
18. Sheppard Ch, Al-Husiani M, Al-Jamali F, Al-Yamani F, Baldwin R, Bishop J, et al. The gulf: A young sea in decline. Mar Pollut Bull. 2010;60(1):13-38. [Link] [DOI:10.1016/j.marpolbul.2009.10.017]
19. Leitão A, Al-Shaikh I, Hassan H, Hamadou RB, Bach S. First genotoxicity assessment of marine environment in Qatar using the local Pearl oyster Pinctada radiata. Reg Stud Mar Sci. 2017;11:23-31. [Link] [DOI:10.1016/j.rsma.2017.02.001]
20. Yap CK, Pang BH. Assessment of Cu, Pb, and Zn contamination in sediment of north western Peninsular Malaysia by using sediment quality values and different geochemical indices. Environ Monit Assess. 2011;183(1-4):23-39. [Link] [DOI:10.1007/s10661-011-1903-3]
21. Ismail A. Heavy metal concentrations in sediments off Bintulu, Malaysia. Mar Pollut Bull. 1993;26(12):706-7. [Link] [DOI:10.1016/0025-326X(93)90556-Y]
22. Bakhtiari AR, Zakaria MP, Yaziz MI, Lajis MN, Bi X, Rahim MC. Vertical distribution and source identification of polycyclic aromatic hydrocarbons in anoxic sediment cores of Chini Lake, Malaysia: Perylene as indicator of land plant-derived hydrocarbons. Appl Geochem. 2009;24(9):1777-87. [Link] [DOI:10.1016/j.apgeochem.2009.05.008]
23. Gu YG, Lin Q, Yu ZL, Wang XN, Ke CL, Ning JJ. Speciation and risk of heavy metals in sediments and human health implications of heavy metals in edible nekton in Beibu Gulf, China: A case study of Qinzhou Bay. Mar Pollut Bull. 2015;101(2):852-9. [Link] [DOI:10.1016/j.marpolbul.2015.11.019]
24. Zhang G, Bai J, Xiao R, Zhao Q, Jia J, Cui B, et al. Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China. Chemosphere. 2017;184:278-88. [Link] [DOI:10.1016/j.chemosphere.2017.05.155]
25. Darvishnia Z, Riahi Bakhtiari A, Kamrani E, Sadjjadi MM. Bioaccumulation of heavy metals (Pb, Fe & Zn) in the tissues of skeletal coral family, faviidae and surrounding sediments in the south of Qeshm Island-the Persian Gulf. J Aquat Ecol. 2015;5(1):77-87. [Persian] [Link]
26. Yılmaz AB, Sangün MK, Yağlıoğlu D, Turan C. Metals (major, essential to non-essential) composition of the different tissues of three demersal fish species from Iskenderun Bay, Turkey. Food Chem. 2010;123(2):410-5. [Link] [DOI:10.1016/j.foodchem.2010.04.057]
27. Movahedi H, Fattollahi M, Pir Ali E, Zamani Ahmad Mahmoudi R. The Bivalve Corbicula fluminalis (Müller, 1774): An indicator for heavy metals accumulation in the habitat of Zayandeh-Roud River. J Aquat Ecol. 2016;6(3):33-44. [Persian] [Link]
28. Cempel M, Nikel G. Nickel: A review of its sources and environmental toxicology. Pol J Environ Stud. 2006;15(3):375-82. [Link]
29. Baruah NK, Kotoky P, Bhattacharyya KG, Borah GC. Metal speciation in Jhanji River sediments. Sci Total Environ. 1996;193(1):1-12. [Link] [DOI:10.1016/S0048-9697(96)05318-1]
30. Shrivastava P, Saxena A, Swarup A. Heavy metal pollution in a sewage‐fed lake of Bhopal, (MP) India. Lakes Reserv Res Manag. 2003;8(1):1-4. [Link] [DOI:10.1046/j.1440-1770.2003.00211.x]
31. Gao S, Walker WJ, Dahlgren RA, Bold J. Simultaneous sorption of Cd, Cu, Ni, Zn, Pb, and Cr on soils treated with sewage sludge supernatant. Water Air Soil Pollut. 1997;93(1-4):331-45. [Link] [DOI:10.1007/BF02404765]
32. Lin JG, Chen SY. The relationship between adsorption of heavy metal and organic matter in river sediments. Environ Int. 1998;24(3):345-52. [Link] [DOI:10.1016/S0160-4120(98)00012-9]
33. Qishlaqi A, Moore F, Forghani G. Characterization of metal pollution in soils under two landuse patterns in the Angouran region, NW Iran; a study based on multivariate data analysis. J Hazard Mater. 2009;172(1):374-84. [Link] [DOI:10.1016/j.jhazmat.2009.07.024]
34. Saar RA, Weber JH. Fulvic acid: Modifier of metal-ion chemistry. Environ Sci Technol. 1982;16(9):510A-7A. [Link] [DOI:10.1021/es00103a001]
35. Kalantar Hormozi S, Javaheri Baboli M, Askari Sari A. Study of role organic matter in changes concentrations Nickel, Mercury and Cadmium in sediment and leaf Avicennia Marina in the Bandar Imam Khomeini. J Mar Sci Technol. 2012;11(1):68-76. [Persian] [Link]
36. Qishlaqi A, Rostami Sh. Contamination and fractionation of heavy metals in bedload sediments of the Siahrood River (Qaem-Shar area-Mazandaran Province). J Stratigr Sedimentol Res. 2016;32(2):73-90. [Persian] [Link]
37. Bradl H, editor. Heavy metals in the environment: Origin, interaction and remediation. 1st Edition. Amsterdam: Elsevier; 2005. [Link] [DOI:10.1016/S1573-4285(05)80020-1]
38. Arfania H, Asadzadeh F. Heavy metals bio-availablity (Zn, Cd, Ni, Cu, and Pb) in sediments of Abshineh River. J Soil Manag Sustain. 2016;5(4):133-46. [Persian] [Link]
39. Sundaray SK, Nayak BB, Lin S, Bhatta D. Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments-a case study: Mahanadi basin, India. J Hazard Mater. 2011;186(2-3):1837-46. [Link] [DOI:10.1016/j.jhazmat.2010.12.081]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.