Volume 7, Issue 2 (2018)                   JFST 2018, 7(2): 101-107 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asgharnia M, Yeganeh S, Jafarpour S, Safari R. Production of Protein Hydrolysate by Chemical Method from Silver Carp (Hypophthalmichthys molitrix) Viscera and its Application as a Culture Media for Pseudomonas aeruginosa. JFST 2018; 7 (2) :101-107
URL: http://jfst.modares.ac.ir/article-6-16554-en.html
1- Fisheries Department, Animal Sciences & Fisheries Faculty, Sari Agricultural Sciences & Natural Resources University, Sari, Iran
2- Fisheries Department, Animal Sciences & Fisheries Faculty, Sari Agricultural Sciences & Natural Resources University, Sari, Iran , skyeganeh@gmail.com
3- Caspian Sea Ecology Research Institute, Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization, Sari, Iran
Abstract:   (8116 Views)
Aims: Wastes related to the fisheries industry include 50% of the weight of fish. Using these raw materials to produce protein hydrolysate results in the production of peptides with functional properties. The aim of this study was to produce protein hydrolysate by chemical method from silver carp (Hypophthalmichthys molitrix) viscera and its application as a culture media for Pseudomonas aeruginosa.
Materials and Methods: The present experimental research on silver carp was conducted at the Caspian Sea Ecology Research Institute. After freeze-thawing of viscera at 4°C, acidic and alkaline hydrolysis was done at 2 pH of 3.3 and 12, and 2 temperatures of 70°C and 85°C. Peptones produced from these treatments (3 replicates for each treatment) were used as a nitrogen source of Pseudomonas aeruginosa culture media at 48 hours and compared with commercial Nutrient Broth culture media. The data were analyzed by SPSS 17, using two-way analysis of variance, Independent T-test, and Duncan test.
Findings: The lowest and the highest Degree of Hydrolysis were related to alkaline hydrolysis at 70°C and 85°C, respectively (p<0.05). Bacteria growth trend in culture media containing peptone at 85°C did not show any significant difference during 48 hours except 24 hours (p>0.05), but these treatments showed significant difference with the control at all of times (p<0.05). Treatments of culture media had no significant differences at 70°C during 48 hours (p>0.05).
Conclusion: The alkaline hydrolysis in higher temperature is better than acidic hydrolysis and growth of Pseudomonas aeruginosa in the produced peptone can be done as well as that of commercial culture media.
Full-Text [PDF 472 kb]   (2425 Downloads)    
Article Type: Research Article | Subject: fish and shellfish physiology
Received: 2017/09/23 | Published: 2018/08/14

References
1. Vázquez JA, González MP, Murado MA. A new marine medium: Use of different fish peptones and comparative study of the growth of selected species of marine bacteria. Enzyme Microb Technol. 2004;35(5):385-92. https://doi.org/10.1016/S0141-0229(04)00180-2 [Link] [DOI:10.1016/j.enzmictec.2004.02.007]
2. Kurbanoglu EB, Kurbanoglu NI. Utilization as peptone for glycerol production of ram horn waste with a new process. Energy Convers Manag. 2004;45(2):225-34. [Link] [DOI:10.1016/S0196-8904(03)00148-1]
3. Martone CB, Borla OP, Sánchez JJ. Fishery by-product as a nutrient source for bacteria and archaea growth media. Bioresour Technol. 2005;96(3):383-7. [Link] [DOI:10.1016/j.biortech.2004.04.008]
4. Kristinsson HG, Rasco BA. Fish protein hydrolysates: Production, biochemical, and functional properties. Crit Rev Food Sci Nutr. 2000;40(1):43-81. [Link] [DOI:10.1080/10408690091189266]
5. Laufenberg G, Kunz B, Nystroem M. Transformation of vegetable waste into value added products: (A) the upgrading concept, (B) practical implementations. Bioresour Technol. 2003;87(2):167-98. [Link] [DOI:10.1016/S0960-8524(02)00167-0]
6. Benhabiles MS, Abdi N, Drouiche N, Lounici H, Pauss A, Goosen MFA, et al. Fish protein hydrolysate production from sardine solid waste by crude pepsin enzymatic hydrolysis in a bioreactor coupled to an ultrafiltration unit. Mater Sci Eng, C. 2012;32(4):922-8. [Link] [DOI:10.1016/j.msec.2012.02.013]
7. Durand H. Methods review to make protein concentrates and fish oil. Science et Pêche. 1976;261:1-20. [French] [Link]
8. Espe M, Haaland H, Njaa LR, Raa J. Growth of young rats on diets based on fish silage with different degrees of hydrolysis. Food Chem. 1992;44(3):195-200. [Link] [DOI:10.1016/0308-8146(92)90187-7]
9. Hultin HO, Kelleher SD. Protein composition and process for isolating a protein composition from a muscle source [Internet]. Suwon: Advanced Protein Technologies Inc; 2001 [cited 2017 Sep 17]. Available from: https://encrypted.google.com/patents/EP1019433A4?cl=en. [Link]
10. Guérard F, Dufossé L, De La Broise D, Binet A. Enzymatic hydrolysis of proteins from yellowfin tuna (Thunnus albacares) wastes using Alcalase. J Mol Catal B, Enzym. 2001;11(4-6):1051-9. [Link] [DOI:10.1016/S1381-1177(00)00031-X]
11. Shabanpour B, Etemadian Y. The shelf-life of conventional surimi and recovery of functional proteins from silver carp (Hypophthalmichthys molitrix) muscle by an acid or alkaline solubilization process during frozen storage. Iran J Fish Sci. 2016;15(1):281-300. [Link]
12. Safari R, Motamedzadegan A, Ovissipour MR, Regenstein JM, Gildberg A, Rasco B. Use of hydrolysates from yellowfin tuna (Thunnus albacares) heads as a complex nitrogen source for lactic acid bacteria. Food Bioprocess Technol. 2012;5(1):73-9. [Link] [DOI:10.1007/s11947-009-0225-8]
13. Arzanloo M, Sattari M, Zavaran Hosseini A, Faezi S. Investigation of protective effects of Pseudomonas aeruginosa anti-flagellar antibodies in burned-induced infection on BALB/c mice. Pathobiol Res. 2010;12(4):1-10. [Persian] [Link]
14. Tsoreava A, Martínez CR. Comparison of two culture media for selective isolation and membrane filter enumeration of Pseudomonas aeruginosa in water. Revista Latinoamericana de Microbiología. 2000;42:149-54. [Link]
15. Laine L, Perry JD, Lee J, Oliver M, James AL, De La Foata C, et al. A novel chromogenic medium for isolation of Pseudomonas aeruginosafrom the sputa of cystic fibrosis patients. J Cyst Fibros. 2009;8(2):143-9. [Link] [DOI:10.1016/j.jcf.2008.11.003]
16. Kathiravan T, Marykala J, Sundaramanickam A, Kumaresan S, Balasubramanian T. Studies on nutritional requirements of Pseudomonas aeruginosa for lipase production. Adv Appl Sci Res. 2012;3(1):591-8. [Link]
17. LaBauve AE, Wargo, MJ. Growth and laboratory maintenance of Pseudomonas aeruginosa. Curr Protoc Microbiol. 2012;Chapter 6:Unit 6E.1. [Link]
18. Food and Agriculture Organization, editor. The state of world fisheries and aquacultur 2014: Opportunities and challenges. Rome: FAO; 2014. p. 243. [Link]
19. Iran Marine Statistics. Vise-presidency for science and Technology, Marine Industry Technology Development council. Tehran: Department of Marine Industry Technology Development council; 2015. p. 106. [Persian] [Link]
20. Mahboob Sh, Sheri AN. Relationships among gonad weight, liver weight and body weight of major, common and some Chinese carps under composite culture system with special reference to pond fertilization. Asian-Australas J Anim Sci. 2002;15(5):740-4. [Link] [DOI:10.5713/ajas.2002.740]
21. Kristinsson HG, Rasco BA. Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. J Agric Food Chem. 2000;48(3):657-66. [Link] [DOI:10.1021/jf990447v]
22. Kristinsson HG, Rasco BA. Kinetics of the hydrolysis of Atlantic salmon (Salmo salar) muscle proteins by alkaline proteases and a visceral serine protease mixture. Process Biochem. 2000;36(1-2):131-9. [Link] [DOI:10.1016/S0032-9592(00)00195-3]
23. Hoyle NT, Merritt JH. Quality of fish protein hydrolysate from Herring (Clupea harengus). J Food Sci. 1994;59(1):76-9. [Link] [DOI:10.1111/j.1365-2621.1994.tb06901.x]
24. Oveisipour M, Safari R, Motamedzadegan A, Shabanpour B. Chemical and biochemical hydrolysis of persian sturgeon (Acipenser persicus) visceral protein. Food Bioprocess Technol. 2012;5(2):460-5. [Link] [DOI:10.1007/s11947-009-0284-x]
25. Oveisipour M, Benjakul S, Safari R, Motamedzadegan A. Fish protein hydrolysates production from yellowfin tuna (Thunnus albacores) head using Alcalase and Protamex. Int Aquat Res. 2010;2(2):87-95. [Link]
26. Jafarpour SA, Shabanpour B, Shirvani Filabadi S. Biochemical properties of Fish Protein Isolate (FPI) from silver carp (Hypophthalmichthys molitrix) by application of acid-alkali processes compared to traditional prepared Surimi. Ecopersia. 2013;1(3):315-27. [Link]
27. Palafox H, Córdova-Murueta JH, Navarrete Del Toro MA, García-Carre-o FL. Protein isolates from jumbo squid (Dosidicus gigas) by pH-shift processing. Process Biochem. 2009;44(5):584-7. [Link] [DOI:10.1016/j.procbio.2009.02.011]
28. Clausen E, Gildberg A, Raa J. Preparation and testing of an autolysate of fish viscera as growth substrate for bacteria. Appl Environ Microbiol. 1985;50(6):1556-7. [Link]
29. Gildberg, A, Dahl, R, Mikkelsen, H, Nilsen, K. Peptones from Atlantic Cod Stomach as Nitrogen Sources in Growth Media to Marine Bacteria. J Aquat Food Prod Technol. 2010;19(2):75-83. [Link] [DOI:10.1080/10498850.2010.486523]
30. Dufossé L, De La Broise D, Guérard F. Evaluation of nitrogenous substrates such as peptones from fish: A new method based on Gompertz modeling of microbial growth. Curr Microbiol. 2001;42(1):32-8. [Link] [DOI:10.1007/s002840010174]
31. Aspmo SI, Horn SJ, Eijsink VG. Use of hydrolysates from Atlantic cod (Gadus morhua L.) viscera as a complex nitrogen source for lactic acid bacteria. FEMS Microbiol Lett. 2005;248(1):65-8. [Link] [DOI:10.1016/j.femsle.2005.05.021]
32. Aspmo SI, Horn SJ, Eijsink VGH. Hydrolysates from Atlantic cod (Gadus morhua L.) viscera as components of microbial growth media. Process Biochem. 2005;40(12):3714-22. [Link] [DOI:10.1016/j.procbio.2005.05.004]
33. Vázquez JA, Docasal SF, Prieto MA, González MA, Murado MA. Growth and metabolic features of lactic acid bacteria in media with hydrolysed fish viscera, an approach to bio-silage of fishing by-products. Bioresour Technol. 2008;99(14):6246-57. [Link] [DOI:10.1016/j.biortech.2007.12.006]
34. Horn SJ, Aspmo SI, Eijsink VGH. Evaluation of different cod viscera fractions and their seasonal variation used in a growth medium for lactic acid bacteria. Enzyme Microb Technol. 2007;40(5):1328-34. [Link] [DOI:10.1016/j.enzmictec.2006.10.007]
35. Ovissipour M, Safari R, Motamedzadegan A, Rasco B, Pourgholam R, Mohagheghi E, et al. Use of hydrolysates from Yellowfin tuna Thunnus albacares fisheries by-product as a nitrogen source for bacteria growth media. Int Aquat Res. 2009;1(1):73-7. [Link]
36. Souissi N, Bougatef A, Triki-Ellouz Y, Nasri M. Production of lipase and biomass by Staphylococcus simulans grown on sardinella (Sardinella aurita) hydrolysates and peptone. Afr J Biotechnol. 2009;8(3):451-7. [Link]
37. Soltanmoradi F, Hedayatifard M. Tracing growth of staphylococcus aureusin a medium containing peptone derived from rainbow trout (Oncorhynchus mykiss) viscera. J Appl Environ Biol Sci. 2015;5(4):156-60. [Link]
38. Association of Official Analytical Chemists International. Official methods of analysis of AOAC international. 16th Edition. Gaithersburg MD: AOAC International; 1999. [Link]
39. Layne, E. Spectrophotometric and Turbidimetric Methods for Measuring Proteins. In: Colowick PS, Kaplan NO., Editors. Method in enzymology. New York: Academic Press; 1957. Pp. 447-54. [Link]
40. Shahidi F, Han XQ, Synowiecki J. Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chem. 1995;53(3):285-93. [Link] [DOI:10.1016/0308-8146(95)93934-J]
41. McCarthy AL, O'Callaghan YC, O'Brien NM. 2013. Protein Hydrolysates from Agricultural Crops—Bioactivity and Potential for Functional Food Development. Agric. 2013;3,112-30. [Link] [DOI:10.3390/agriculture3010112]
42. He S, Franco C, Zhang W. Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP). Food Res Int. 2013;50(1):289-97. [Link] [DOI:10.1016/j.foodres.2012.10.031]
43. Tannenbaum SR, Ahern M, Bates RP. Solubilization of fish protein concentrate. 1. an alkaline process. Food Technol. 1970;24(5):604. [Link]
44. Kristinsson H, Demir N. Functional fish protein ingredients from fish species of warm and temperate waters: Comparison of acid - and alkali - aided processing vs conventional surimi processing. In: Bechtel PJ, editor. Advances in seafood byproducts 2002 conference proceedings: Proceedings of the 2nd international seafood byproduct conference, november 10-13, 2002, Anchorage, Alaska, USA. Fairbanks: Alaska Sea Grant College Program, University of Alaska Fairbanks; 2003. pp. 277-95. [Link]
45. Omana DA, Xu Y, Moayedi V, Betti M. Alkali-aided protein extraction from chicken dark meat: Chemical and functional properties of recovered proteins. Process Biochem. 2010;45(3):375-81. [Link] [DOI:10.1016/j.procbio.2009.10.010]
46. Hrynets Y, Omana DA, Xu Y, Betti M. Comparative study on the effect of acid - and alkaline - aided extractions on mechanically separated turkey meat (MSTM): Chemical characteristics of recovered proteins. Process Biochem. 2011;46(1):335-43. [Link] [DOI:10.1016/j.procbio.2010.09.006]
47. Nolsøe H, Undeland I. The acid and alkaline solubilization process for the isolation of muscle proteins: State of the art. Food Bioprocess Technol. 2009;2(1):1-27. [Link] [DOI:10.1007/s11947-008-0088-4]
48. Costa E., Teixidó N, Usall J, E. Atarés E, Viňas I. The effect of nitrogen and carbon sources on growth of the biocontrol agent Pantoea agglomerans strain CPA-2. Lett Appl Microbiol. 2002;35,117-20. [Link] [DOI:10.1046/j.1472-765X.2002.01133.x]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.