Volume 7, Issue 4 (2018)                   JFST 2018, 7(4): 279-286 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jamali H, Meshkini S. Study of Sudden Replacement of Live Feed by Commercial Feed Affects Growth, Survival Rate and Resistance to Environmental Stress in Oscar Fish (Astronotus ocellatus) Larvae. JFST 2018; 7 (4) :279-286
URL: http://jfst.modares.ac.ir/article-6-12720-en.html
1- Fisheries Department, Natural Resources Faculty, Urmia University, Urmia, Iran , saeed.jamali11@gmail.com
2- Food Hygiene & Quality Control Department, Veterinary Medicine Faculty, Urima University, Urima, Iran
Abstract:   (7141 Views)
The huge attention toward dried food in ornamental fish culture is caused by the difficulty related to live-food preparation. This study investigated the effects replacement of live feed by commercial feed TetraMin on growth, survival rate and resistance to environmental stress in Oscar fish (Astronotus ocellatus) larvae. The experimental setup was completely randomized design comprised of five treatments including, namely T1 (Forty days Artemia nauplii), T2 (Thirty days Artemia ten days of commercial food), T3 (Twenty days Artemia twenty days of commercial food), T4 (Ten days Artemia thirty days of commercial food) and T5 (Forty days commercial feed). All treatments were performed in triplicate. In this study, fish larvae were fed 4 times a day and to apparent satiation, commercial feed and live feed. After a 40-day feeding experimental period, all the larvae each aquarium were sampled for and growth determination. Fish larvae in T1, T2, and T3 treatments showed the highest total length, weight and survival rate. Lowest total length, weight and survival rate were recorded in T5 treatment (p<0.05). Also, against challenge tests in T1, T2 and T3 treatments was significantly in comparison with T5 (p<0.05). The results of the present study demonstrate that the Oscar fish larvae could consume commercial feed starting from the 20 without any difference in growth with live food.
Keywords: Artemia, Cichlid, Larva, Growth
Full-Text [PDF 868 kb]   (3546 Downloads)    
Article Type: Research Article | Subject: fish and shellfish physiology
Received: 2016/08/2 | Published: 2018/12/20

1. Firouzbakhsh F, Noori F, Khalesi MK, Jani Khalili K. Effects of a probiotic, protexin, on the growth performance and hematological parameters in the Oscar (Astronotus ocellatus) fingerlings. Fish Physiol Biochem. 2011;37(4):833-42. [Link] [DOI:10.1007/s10695-011-9481-4]
2. IFO. Statistical yearbook of Iran Fisheries Organization. 1st Edition. Office of Planning and Budget; 2015. [Persian] [Link]
3. Stickney RR, editor. Encyclopedia of aquaculture. Hoboken: Wiley; 2000. [Link] [DOI:10.1002/0471238961.0117210119200903.a01]
4. Changizi R, Matinfar A, Jamili Sh, Ghiasvand Z. Comparing the breeding indices in different sex ratio and photoperiod in Cichlosoma nigrofasciatum as an ornamental fish. Pajouhesh & Sazandegi. 2008;(79):135-43. [Persian] [Link]
5. Emadi H. Aquarium, breeding and rearing of freshwater aquariums fish. Aquatic Science Press; 1981. [Persain] [Link]
6. Jafaryan H. The study of feeding parameters of Beluga (Huso huso) larvae fed with Artemia nauplii and Daphnia. J Aquat Nutr Biochem. 2014;2:67-79. [Persain] [Link]
7. Lavens P, Sorgeloos P. The history, present status and prospects of the availability of Artemia cysts for aquaculture. Aquaculture. 2000;181(3-4):397-403. [Link] [DOI:10.1016/S0044-8486(99)00233-1]
8. Campbell R, Adams A, Tatner MF, Chair M, Sorgeloos P. Uptake of Vibrio anguillarum vaccine by Artemia salina as a potential oral delivery system to fish fry. Fish Shellfish Immunol. 1993;3(6):451-9. [Link] [DOI:10.1006/fsim.1993.1044]
9. Manaffar R, Abtahi B, Agh N. Enrichment of Artemia urmiana nauplii using emulsion of fatty acids and an investigation of hufa metabolism in cold incubation. Iran J Nat Resour. 2005;58(1):125-34. [Persian] [Link]
10. Hafezieh M, Hosseinpour H. A survey of salinity tolerance of Persian sturgeon larvae (Acipencer persicus) fed with enriched live food containing HUFA and vitamin C. Iran Sci Fish J. 2012;21(3):45-54. [Persian] [Link]
11. Agh N, Kazemi E, , Noori F, Aalamifar H, Adineh H, Rastian Nasab A. Enriched Artemia urmiana nauplii with vegetable oil and effect on growth and survival in rainbow trout (Oncorhynchus mykiss) larvae. Iran Sci Fish J. 2012;2:89-97. [Persian] [Link]
12. Jamali H, Imani A, Abdollahi D, Roozbehfar R, Isari A. Use of probiotic bacillus spp. in Rotifer (Brachionus plicatilis) and Artemia (Artemia urmiana) enrichment: Effects on growth and survival of pacific white shrimp, Litopenaeus vannamei, larvae. Probiotics Antimicrob Proteins. 2015;7(2):118-25. [Link] [DOI:10.1007/s12602-015-9189-3]
13. Bell JG, Henderson RJ, Tocher DR, Mc Ghee F, Dick JR, Porter A, et al. Substituting fish oil with crude palm oil in the diet of Atlantic salmon (Salmo salar) affects muscle fatty acid composition and hepatic fatty acid metabolism. J Nutr. 2002;132(2):222-30. [Link] [DOI:10.1093/jn/132.2.222]
14. Conceição LEC, Yúfera M, Makridis P, Morais S, Teresa Dinis M. Live feeds for early stages of fish rearing. Aquac Res. 2010;41(5):613-40. [Link] [DOI:10.1111/j.1365-2109.2009.02242.x]
15. Van Der Meeren T, Olsen RE, Hamre K, Fyhn HJ. Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture. 2008;274(2-4):375-97. [Link] [DOI:10.1016/j.aquaculture.2007.11.041]
16. Rodgers LJ, Barlow CG. Better nutrition enhances the growth of barramundi larvae. Austasia Fish. 1987;46:30-2. [Link]
17. Kanazawa A. Microparticulate feeds for Penaeid larvae. Actes de colloques Ifremer. 1989;9:395-404. [Link]
18. Rimmer MA, Rutledge WP. Extensive rearing of barramundi larvae. Queensland: Department of Primary Industries; 1991. [Link]
19. McVey JP. CRC Handbook of Mariculture. 1st Volume. 2nd Edition. Boca Raton: CRC Press; 1993. p. 544. [Link]
20. Sorgeloos P, Lavens P, Leger P, Tachaert W. State of the art in larviculture of fish and shellfish. In: Lavens P, Sorgeloos P, Jaspers E, Ollevier F, editors. Larvi 91 - fish & crustacean larviculture symposium. Gent: European Aquaculture Society; 1991. pp. 484-6. [Link]
21. Navarro JC, Mc Evoy LA, Amat F, Sargent JR. Effect of diet on fatty acid composition of body zones in larvae of the sea bass Dicentrachus labrax: A chemometric study. Mar Biol. 1995;124(2):177-83. [Link] [DOI:10.1007/BF00347121]
22. Jamali H, Jafaryan H, Nazerian S, Aramli MS. Effect of probiotic Bacillus spp. on growth and feed efficiency of common carp, grass carp and bighead larvae fed with nauplii of different Artemia species. Fish Sci Technol. 2015;4(2):27-43. [Persian] [Link]
23. Tucker JW Jr. Feeding intensively cultured marine fish larvae. In: Allan GL, Dall W, editors. Proceedings of the aquaculture nutrition workshop, Salamander Bay, 15-17 April 1991. Taylors Beach NSW: NSW Fisheries; 1992. pp. 129-46. [Link]
24. Person-Le Ruyet J. Early weaning of marine fish larvae onto microdiets: Constraints and perspectives. Actes de colloques Ifremer. 1989;9:625-42. [Link]
25. Hung LT, Tuan NA, Cacot P, Lazard J. Larval rearing of the Asian catfish, Pangasius bocourti (Siluroidei, Pangasiidae): Alternative feeds and weaning time. Aquaculture. 2002;212(1-4):115-27. [Link] [DOI:10.1016/S0044-8486(01)00737-2]
26. Bonaldo A, Parma L, Badiani A, Serratore P, Gatta PP. Very early weaning of common sole (Solea solea L.) larvae by means of different feeding regimes and three commercial microdiets: Influence on performances, metamorphosis development and tank hygiene. Aquaculture. 2011;321(3-4):237-44. [Link] [DOI:10.1016/j.aquaculture.2011.09.007]
27. Muguet JB, Lazo JP, Conklin DE, Piedrahita RH. Evaluation of weaning performance of California halibut (Paralichthys californicus) larvae using growth, survival and digestive proteolytic activity. Aquac Nutr. 2011;17(2):e486-93. [Link] [DOI:10.1111/j.1365-2095.2010.00786.x]
28. Wang Y, Hu M, Wang W, Cao L. Effects on growth and survival of loach (Misgurnus anguillicaudatus) larvae when co‐fed on live and microparticle diets. Aquac Res. 2009;40(4):385-94. [Link] [DOI:10.1111/j.1365-2109.2008.02104.x]
29. Ballagh DA, Stewart Fielder D, Pankhurst PM. Weaning requirements of larval mulloway, Argyrosomus japonicus. Aquac Res. 2010;41(10):e493-504. [Link] [DOI:10.1111/j.1365-2109.2010.02519.x]
30. Cahu CL, Zamborino Infante JL, Eseaffre AM, Bergot P, Kaushik S. Preliminary results on sea bass (Dicentrarchus labrax) larvae rearing with compound diet from first feeding, comparison with carp (Cyprinus carpio) larvae. Aquaculture. 1998;169(1-2):1-7. [Link] [DOI:10.1016/S0044-8486(98)00316-0]
31. Yaghoobi M. Effects of Artemia enriched with fatty acids (HUFA) on survival, growth and resistance to environmental stress in angelfish (Pterophyllum scalar) larvae [Dissertation]. Esfahan: Esfahan University; 2010. [Persian] [Link]
32. Heidary M, Akbary P. The effect of Artemia nauplii on spawning, fecundity, percent of fertilization and growth of angel fish (Pterophyllum scalar). J Anim Res. 2013;26(4):355-64. [Persian] [Link]
33. Lavens P, Sorgeloos P, editors. Manual on the production and use of live food for aquaculture. Rome: Food and Agriculture Organization of the United Nations; 1996. pp. 283-95. [Link]
34. Gomez-Gil B, Herrera-Vega MA, Alberto Abreu-Grobois F, Roque A. Bioencapsulation of two different Vibrio species in nauplii of the brine shrimp (Artemia franciscana). Appl Environ Microbiol. 1998;64(6):2318-22. [Link]
35. Azevedo PA, Leeson S, Cho CY, Bureau DP. Growth and feed utilization of large size rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) reared in freshwater: Diet and species effects, and responses over time. Aquac Nutr. 2004;10(6):401-11. [Link] [DOI:10.1111/j.1365-2095.2004.00322.x]
36. AOAC. Official methods of analysis of AOAC. 1st Volume. 15th Edition. Horwitz W, editor. Arlington: AOAC; [Link]
38. Sørensen M, Storebakken T, Shearer KD. Digestibility, growth and nutrient retention in rainbow trout (Oncorhynchus mykiss) fed diets extruded at two different temperatures. Aquac Nutr. 2005;11(4):251-6. [Link] [DOI:10.1111/j.1365-2095.2005.00347.x]
39. Sakunthala Herath S, Senarathna Atapaththu KS. Sudden weaning of angel fish pterophyllum scalare (Lichtenstein) (Pisces; Cichlidae) larvae from brine shrimp (Artemia sp) nauplii to formulated larval feed. SpringerPlus. 2013;2:102. [Link] [DOI:10.1186/2193-1801-2-102]
40. Bengtson DA, Lydon L, Ainley JD. Green-water rearing and delayed weaning improve growth and survival of summer flounder. North Am J Aquac. 1999;61(3):239-42. https://doi.org/10.1577/1548-8454(1999)061<0239:GWRADW>2.0.CO;2 [Link] [DOI:10.1577/1548-8454(1999)0612.0.CO;2]
41. Ribeiro L, Zambonino-Infante JL, Cahu C, Dinis MT. Digestive enzymes profile of Solea senegalensis post larvae fed Artemia and a compound diet. Fish Physiol Biochem. 2002;27(1-2):61-9. [Link] [DOI:10.1023/B:FISH.0000021817.98363.47]
42. Teshima SI, Koshio S, Ishikawa M, Alam MS, Hernandez LHH. Effects of protein and lipid sources on the growth and survival of red sea bream Pagrus major and Japanese flounder Paralichthys olivaceus receiving micro‐bound diets during larval and early juvenile stage. Aquac Nutr. 2004;10(4):279-87. [Link] [DOI:10.1111/j.1365-2095.2004.00303.x]
43. Jamali H, Ahmadifard N, Noori F, Agh N, Gisbert E. Improving co‐feeding strategies for Neotropical green terror cichlid (Aequidens rivulatus) larvae with lecithin‐enriched Artemia franciscana nauplii: Effects on survival, growth performance and body composition. Aquac Res. 2018;49(12):3909-18. [Link] [DOI:10.1111/are.13861]
44. Baskerville-Bridges B, Kling LJ. Early weaning of Atlantic cod (Gadus morhua) larvae onto a microparticulate diet. Aquaculture. 2000;189(1-2):109-17. [Link] [DOI:10.1016/S0044-8486(00)00356-2]
45. Lazo JP, Dinis MT, Joan Holt G, Faulk C, Arnold CR. Co-feeding microparticulate diets with algae: toward eliminating the need of zooplankton at first feeding in larval red drum (Sciaenops ocellatus). Aquaculture. 2000;188(3-4):339-51. [Link] [DOI:10.1016/S0044-8486(00)00339-2]
46. Dabrowski K. The feeding of fish larvae: Present « state of the art » and perspectives. Reprod Nutr Dev. 1984;24(6):807-33. [Link] [DOI:10.1051/rnd:19840701]
47. Segner H, Rösch R, Verreth J, Witt U. Larval nutritional physiology: Studies with Clarias gariepinu, Coregonus lavaretus and Scophtalmus maximus. J World Aquac Soc. 1993;24(2):121-34. [Link] [DOI:10.1111/j.1749-7345.1993.tb00001.x]
48. Kolkovski S. Digestive enzymes in fish larvae and juveniles-implications and applications to formulated diets. Aquaculture. 2001;200(1-2):181-201. [Link] [DOI:10.1016/S0044-8486(01)00700-1]
49. Langdon CJ. Microparticles types for delivering nutrients to marine fish larvae. Aquaculture. 2003;227(1-4):259-75. [Link] [DOI:10.1016/S0044-8486(03)00508-8]
50. Keramat Amir Kolaei AS, Ebrahimi MH. Replacement of live feed by dried feed affects growth and survival rate in fighter (Betta splendens) larvae. J Fish. 2008;2(2):49-56. [Persian] [Link]
51. Polat A, Bekievik G. The importance of betaine and some attractive substances as fish feed additives. In: Brufau J, Tacon A, editors. Feed manufacturing in the Mediterranean region: Recent advances in research and technology Zaragoza. 1998. p. 211. [Link]
52. Çelik İ, Çelik P, Gürkan M, Şahin T. Larval development of the freshwater angelfish Pterophyllum scalare (Teleostei: Cichlidae). Turk J Fish Aquat Sci. 2014;14:863-74. [Link] [DOI:10.4194/1303-2712-v14_4_03]
53. Pedro Cañavate J, Fernández-Dı́az C. Influence of co-feeding larvae with live and inert diets on weaning the sole Solea senegalensis onto commercial dry feeds. Aquaculture. 1999;174(3-4):255-63. [Link] [DOI:10.1016/S0044-8486(99)00021-6]
54. Khemis I, Audet C, Fournier R, Dela Noue J. Early weaning of winter flounder (Pseudopleuronectes Americanus Walbaum) larvae on a commercial microencapsulated diet. Aquac Res.2003;34: 445-452. [Link] [DOI:10.1046/j.1365-2109.2003.00828.x]
55. Faulk CK, Joan Holt G. Early weaning of Southern flounder, Paralichthys lethostigma, larvae and ontogeny of selected digestive enzymes. Aquaculture. 2009;296(3-4):213-8. [Link] [DOI:10.1016/j.aquaculture.2009.08.013]
56. Boglione C, Gagliardi F, Scardi M, Cataudella S. Skeletal descriptors and quality assessment in larvae and post-larvae of wild-caught and hatchery-reared gilthead sea bream (Sparus aurata L. 1758). Aquaculture. 2001;192(1):1-22. [Link] [DOI:10.1016/S0044-8486(00)00446-4]
57. Lewis LM, Lall SP, Eckhard Witten P. Morphological descriptions of the early stages of spine and vertebral development in hatchery-reared larval and juvenile Atlantic halibut (Hippoglossus hippoglossus). Aquaculture. 2004;241(1-4):47-59. [Link] [DOI:10.1016/j.aquaculture.2004.08.018]
58. Cahu C, Zambonino Infante JL, Takeuchi T. Nutritional components affecting skeletal development in fish larvae. Aquaculture. 2003;227(1-4):245-58. [Link] [DOI:10.1016/S0044-8486(03)00507-6]
59. Lim LC, Cho YL, Dhert P, Wong CC, Nelis H, Sorgeloos P. Use of decapsulated Artemia cysts in ornamental fish culture. Aquac Res. 2002;33(8):575-89. [Link] [DOI:10.1046/j.1365-2109.2002.00687.x]
60. Jelkić D, Opačak A, Horvat D, Safner R. Common carp fry survival during salinity stress test: Effect of feeding regime - short communication. Veterinarski Arhiv. 2014;84(4):429-38.

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.