Volume 7, Issue 1 (2018)                   JFST 2018, 7(1): 57-64 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Esmaeili Kharyeki M, Rezaei M, Khodabandeh S, Motamedzadegan A. Antioxidant Activity of Protein Hydrolysate in Skipjack tuna Head. JFST 2018; 7 (1) :57-64
URL: http://jfst.modares.ac.ir/article-6-13782-en.html
1- Seafood Processing Department, Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran
2- Marine Biology Department, Marine Sciences Faculty, Tarbiat Modares University University, Noor, Iran , rezaei_ma@modares.ac.ir
3- Marine Biology Department, Marine Sciences Faculty, Tarbiat Modares University University, Noor, Iran
4- Food Sciences and Technology Department, Agriculture Sciences Faculty, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
Abstract:   (11034 Views)
Aims: Skipjack tuna has the highest level of catch rate among tuna all over the world. Its head contains about 64% protein. Many Protein Hydrolysates and peptides obtained from various marine sources have a high antioxidant power. The aim of this study was to investigate the antioxidant activity of Protein Hydrolysate in Skipjack tuna head.
Materials & Methods: In this experimental study, 30 Skipjack tunas were investigated. At first, the amount of different compounds (protein, fat, ash, and moisture) was evaluated in the raw material; then, the hydrolysis process was performed by Alcalase enzyme and the hydrolysis degree of the protein hydrolysate was evaluated at different times. The antioxidant activity of the protein hydrolysate mixture was measured by DPPH radical scavenging activity, iron revival power, and ABTS radical inhibitory activity. For data analysis, the analytical tests were used.
Findings: The main part of the fish head was protein and it had high levels of ash. The degree of hydrolysis increased with increasing time and was it significant at 15, 60, and 120 minutes (p<0.05), but not significant at 120 and 240 minutes (p<0.05). DPPH radical scavenging activity increased with increasing hydrolysis time and there was a significant difference in all samples obtained from different times (p<0.05). The iron reduction capacity of the protein hydrolysate samples increased with increasing the hydrolysis time, and the highest amount was at 240 minute. The samples obtained from different times had a significant difference in iron reduction capacity (p<0.05). Increasing the concentration of protein hydrolysate increased inhibitory activity (p<0.05).
Conclusion: Protein hydrolysate in Skipjack tuna head has a high antioxidant activity and can be used in food products to increase oxidation stability.
Full-Text [PDF 872 kb]   (2635 Downloads)    
Article Type: Research Article | Subject: fish and shellfish physiology
Received: 2016/04/18 | Published: 2018/03/20

References
1. Choi JI, Kim JH, Lee JW. Physiological properties of tuna cooking drip hydrolysates prepared with gamma irradiation. Process Biochem. 2011;46(9):1875-8. [Link] [DOI:10.1016/j.procbio.2011.06.005]
2. Ahn ChB, Je JY, Cho YS. Antioxidant and anti-inflammatory peptide fraction from salmon byproduct protein hydrolysates by peptic hydrolysis. Food Res Int. 2012;49(1):92-8. [Link] [DOI:10.1016/j.foodres.2012.08.002]
3. Eiroa M, Costa JC, Alves MM, Kennes C, Veiga MC. Evaluation of the biomethane potential of solid fish waste. Waste Manag. 2012;32(7):1347-52. [Link] [DOI:10.1016/j.wasman.2012.03.020]
4. He Sh, Franco Ch, Zhang W. Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP). Food Res Int. 2013;50(1):289-97. [Link] [DOI:10.1016/j.foodres.2012.10.031]
5. Yang P, Ke H, Hong P, Zeng Sh, Cao W. Antioxidant activity of bigeye tuna (Thunnus obesus) head protein hydrolysate prepared with Alcalase. Int J Food Sci Technol. 2011;46(12):2460–6. 2621.2011.02768.x/abstract;jsessionid=F0E68409B010CB2EC5698B67EFD65A55.d04t01 [Link] [DOI:10.1111/j.1365-2621.2011.02768.x]
6. Kim SK. Marin proteins and peptides: Biological activities and applications. New York: John Wiley & Sons; 2013. p. 385-435. [Link] [DOI:10.1002/9781118375082]
7. Shahidi F, Zhong Y. Bioactive peptides. J AOAC Int. 2008;91(4):914-31. [Link]
8. Agyei D, Danquah MK. Rethinking food-derived bioactive peptides for antimicrobial and immunomodulatory activities. Trends Food Sci Technol. 2012;23(2):62-9. [Link] [DOI:10.1016/j.tifs.2011.08.010]
9. Ovissipour M, Benjakul S, Safari R, Motamedzadegan A. Fish protein hydrolysates production from yellowfin tuna Thunnus albacares head using Alcalase and Protamex. Int Aquat Res. 2010;2(2):87-95. [Link]
10. Rajapakse N, Jung WK, Mendis E, Moon SH, Kim SK. A novel anticoagulant purified from fish protein hydrolysates inhibits factor XIIa and platelet aggregation. Life Sci. 2005;76(22):2607-19. [Link] [DOI:10.1016/j.lfs.2004.12.010]
11. Je JY, Lee KH, Lee MH, Ahn ChB. Antioxidant and antihypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Food Res Int. 2009;42(9):1266-72. [Link] [DOI:10.1016/j.foodres.2009.06.013]
12. Gu RZ, Li CY, Liu WY, Yi WX, Cai MY. Angiotensin I-converting enzyme inhibitory activity of low-molecular-weight peptides from Atlantic salmon (Salmo salar L.) skin. Food Res Int. 2011;44(5):1536-40. [Link] [DOI:10.1016/j.foodres.2011.04.006]
13. Rajanbabu V, Chen JY. Applications of antimicrobial peptides from fish and perspectives for the future. Peptides. 2011;32(2):415-20. [Link] [DOI:10.1016/j.peptides.2010.11.005]
14. Zhong S, Ma Ch, Lin YC, Luo Y. Antioxidant properties of peptide fractions from silver carp (Hypophthalmichthys molitrix) processing by-product protein hydrolysates evaluated by electron spin resonance spectrometry. Food Chem. 2011;126(4):1636-42. [Link] [DOI:10.1016/j.foodchem.2010.12.046]
15. Wang M, Nie Y, Peng Y, He F, Yang J, Wu Ch, et al. Purification, characterization and antitumor activities of a new protein from Syngnathus acus, an official marine fish. Mar Drugs. 2012;10(1):35-50. [Link]
16. Ko JY, Lee JH, Samarakoon K, Kim JS, Jeon YJ. Purification and determination of two novel antioxidant peptides from flounder fish (Paralichthys olivaceus) using digestive proteases. Food Chem Toxicol. 2013;52(1):113-20. [Link] [DOI:10.1016/j.fct.2012.10.058]
17. Farvin KHS, Andersen LL, Nielsen HH, Jacobsen Ch, Jakobsen G, Johansson I, et al. Antioxidant activity of Cod (Gadus morhua) protein hydrolysates: In vitro assays and evaluation in 5% fish oil-in-water emulsion. Food Chem. 2014;149:326-34. [Link] [DOI:10.1016/j.foodchem.2013.03.075]
18. Jiang H, Tong T, Sun J, Xu Y, Zhao Zh, Liao D. Purification and characterization of antioxidative peptides from round scad (Decapterus maruadsi) muscle protein hydrolysates. Food Chem. 2014;154(1):158-63. [Link] [DOI:10.1016/j.foodchem.2013.12.074]
19. Girgih AT, Udenigwe ChC, Hasan FM, Gill TA, Aluko RE. Antioxidant properties of Salmon (Salmo Salar) protein hydrolysate and peptide fractions isolated by reverse-phase HPLC. Food Res Int. 2013;52(1):315-22. [Link] [DOI:10.1016/j.foodres.2013.03.034]
20. Udenigwe CC, Aluko RE. Food protein-derived bioactive peptides: Production, processing, and potential health benefits. J Food Sci. 2012;77(1):11-24. [Link] [DOI:10.1111/j.1750-3841.2011.02455.x]
21. Association of official analytical chemists. Official Methods of Analysis. 15th Edition. Washington, DC: Association of Official Analytical Chemists; 1990. [Link]
22. Hoyle NT, Merritt JH. Quality of fish protein hydrolysate from Herring (Clupea harengus). J Food Sci. 1994;59(1):76-9. [Link] [DOI:10.1111/j.1365-2621.1994.tb06901.x]
23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-75. [Link]
24. Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem. 1992;40(6):945-8. [Link] [DOI:10.1021/jf00018a005]
25. Oyaizu M. Studies on products of browning reaction--antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr. 1986;44(6):307-15. [Link] [DOI:10.5264/eiyogakuzashi.44.307]
26. Alemán A, Pérez-Santín E, Bordenave-Juchereau S, Arnaudin I, Gómez-Guillén MC, Montero P. Squid gelatin hydrolysates with antihypertensive, anticancer and antioxidant activity. Food Res Int. 2011;44:1044-51. [Link] [DOI:10.1016/j.foodres.2011.03.010]
27. Karunarathna KAAU, Attygalle MVE. Nutritional evaluation in five species of tuna. Vidyodaya J Sci. 2012;15(1):7-16. [Link]
28. Batista I, Ramos C, Coutinho J, Bandarra NM, Nunes ML. Characterization of protein hydrolysates and lipids obtained from black scabbardfish (Aphanopus carbo) by-products and antioxidative activity of the hydrolysates produced. Process Biochem. 2010;45(1):18-24. [Link] [DOI:10.1016/j.procbio.2009.07.019]
29. Dong Y, Sheng G, Fu J, Wen K. Chemical characterization and antianaemia activity of fish protein hydrolysate from Saurida elongate. J Sci Food Agric. 2005;85:2033-9. [Link] [DOI:10.1002/jsfa.2219]
30. Gbogouri GA, Linder M, Fanni J, Parmentier M. Influence of hydrolysis degree on the functional properties of salmon byproduct hydrolysates. J Food Sci. 2004;69:615-22. [Link] [DOI:10.1111/j.1365-2621.2004.tb09909.x]
31. Sathivel S, Bechtel PJ, Babbitt J, Smiley S, Crapo C, Reppond KD, et al. Biochemical and functional properties of Herring (Clupea harengus) byproduct hydrolysates. J Food Sci. 2003;68(7):2196-200. [Link] [DOI:10.1111/j.1365-2621.2003.tb05746.x]
32. Chalamaiah M, Narsing Rao DG, Rao DG, Jyothirmayi T. Protein hydrolysates from meriga (Cirrhinus mrigala) egg and evaluation of their functional properties. Food Chem. 2010;120(1):652-7. [Link] [DOI:10.1016/j.foodchem.2009.10.057]
33. Kristinsson HG, Rasco BA. Fish protein hydrolysates: Production, biochemical and functional properties. Crit Rev Food Sci Nutr. 2000;40(1):43-81. [Link] [DOI:10.1080/10408690091189266]
34. Thiansilakul Y, Benjakul S, Shahidi F. Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi). Food Chem. 2007;103(4):1385-94. [Link] [DOI:10.1016/j.foodchem.2006.10.055]
35. Foh MBK, Kamara MT, Amadou I, Foh BM, Wenshui X. Chemical and physicochemical properties of Tilapia (Oreochromis niloticus) fish protein hydrolysates and concentrate. Int J Biol Chem. 2011;5(1):21-36. [Link] [DOI:10.3923/ijbc.2011.21.36]
36. Wasswa J, Tang J, Gu X, Yuan X. Influence of the extent of enzymatic hydrolysison the functional properties of protein hydrolysate from grass carp (Ctenopharyngodon idella) skin. Food Chem. 2007;104(4):1698-704. [Link] [DOI:10.1016/j.foodchem.2007.03.044]
37. Bhaskar N, Benila T, Radha C, Lalitha RG. Optimization of enzymatic Hydrolysis of visceral waste proteins of catla (Catla catla) for preparing protein hydrolysates using a commercial protease. Bioresour Technol. 2008;99(2):335-43. [Link] [DOI:10.1016/j.biortech.2006.12.015]
38. Choi JI, Kim HJ, Kim JH, Song BS, Chun BS, Ahn DH, et al. Improvement of color and physiological properties of tuna-processing by product, by gamma irradiation. Radiation Phys Chem. 2009;78(7-8):601-3. [Link] [DOI:10.1016/j.radphyschem.2009.03.046]
39. Guérard F, Dufossé L, De La Broise D, Binet A. Enzymatic hydrolysis of proteins from yellowfin tuna (Thunnus albacares) wastes using Alcalase. J Mol Catal B: Enzym. 2001;11(4-6):1051-9. [Link] [DOI:10.1016/S1381-1177(00)00031-X]
40. Ramakrishnan VV, Ghaly AE, Brooks MS, Budge SM. Extraction of oil from mackerel fish processing waste using Alcalase Enzyme. Enzym Eng. 2013;2(2):1000115. [Link]
41. Dong S, Zeng M, Wang DF, Liu Z, Zhao Y, Yang H. Antioxidant and biochemical properties of protein hydrolysates prepared from Silver carp (Hypophthalmichthys molitrix). Food Chem. 2008;107(4):1485-93. [Link] [DOI:10.1016/j.foodchem.2007.10.011]
42. Shahidi F, Han XQ, Synowiecki J. Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chem. 1995;53(3):285-93. [Link] [DOI:10.1016/0308-8146(95)93934-J]
43. Guerard F, Guimas L, Binet A. Production of tuna waste hydrolysates by a commercial neutral protease preparation. J Mol Catal B: Enzym. 2002;19-20:489-98. [Link] [DOI:10.1016/S1381-1177(02)00203-5]
44. Gildberg A. Enzymic processing of marine raw materials. Process Biochem. 1993;28(1):1-15. [Link] [DOI:10.1016/0032-9592(94)80030-8]
45. Liaset B, Lied E, Espe M. Enzymatic hydrolysis of by-products from the fish-filleting industry; chemical characterization and nutritional evaluation. J Sci Food Agric. 2000;80(5):581-9. https://doi.org/10.1002/(SICI)1097-0010(200004)80:5<581::AID-JSFA578>3.0.CO;2-I [Link] [DOI:10.1002/(SICI)1097-0010(200004)80:53.0.CO;2-I]
46. Khantaphant S, Benjakul S. Comparative study on the proteases from fish pyloric caeca and the use for production of gelatin hydrolysate with antioxidative activity. Comp Biochem Physiol B Biochem Mol Biol. 2008;151(4):410-9. [Link] [DOI:10.1016/j.cbpb.2008.08.011]
47. Nalinanon S, Benjakul S, Kishimura H, Shahidi F. Functionalities and antioxidant properties of protein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna. Food Chem. 2011;124(4):1354-62. [Link] [DOI:10.1016/j.foodchem.2010.07.089]
48. Hsu KCh, Lu GH, Jao ChL. Antioxidative properties of peptides prepared from tuna cooking juice hydrolysates with orientase (Bacillus subtilis). Food Res Int. 2009;42(5-6):647-52. [Link] [DOI:10.1016/j.foodres.2009.02.014]
49. Chalamaiah M, Dinesh kumar B, Hemalatha R, Jyothirmayi T. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chem. 2012;135(4):3020-38. [Link] [DOI:10.1016/j.foodchem.2012.06.100]
50. Hsu KCh. Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food Chem. 2010;122(1):42-8. [Link] [DOI:10.1016/j.foodchem.2010.02.013]
51. Wu HCh, Chen HM, Shiau ChY. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of Mackerel (Scomber austriasicus). Food Res Int. 2003;36(9-10):949-57. [Link] [DOI:10.1016/S0963-9969(03)00104-2]
52. Bougatef A, Nedjar-Arroume N, Manni L, Ravallec R, Barkia A, Guillochon D, et al. Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-product proteins. Food Chem. 2010;118(3):559-65. [Link] [DOI:10.1016/j.foodchem.2009.05.021]
53. Klompong V, Benjakul S, Kantachote D, Shahidi F. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem. 2007;102:1317-27. [Link] [DOI:10.1016/j.foodchem.2006.07.016]
54. Bougatef A, Hajji M, Balti R, Lassoued I, Triki-Ellouz Y, Nasri M. Antioxidant and free radical scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chem. 2009;114:1198-205. [Link] [DOI:10.1016/j.foodchem.2008.10.075]
55. Jeevitha K, Mohana PK, Khora SS. Antioxidant activity of fish protein Hydrolysates from Sardinella longiceps. Int J Drug Dev Res. 2014;6(4):137-45. [Link]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.