1. Burt S. Essential oils: Their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol. 2004;94(3):223-53. [
Link] [
DOI:10.1016/j.ijfoodmicro.2004.03.022]
2. Shahnia M, Khaksar R. Antimicrobial effects and determination of minimum inhibitory concentration (MIC) methods of essential oils against pathogenic bacteria. Iran J Nutr Sci Food Technol. 2013;7(5):949-54. [
Link]
3. Ojagh SM, Rezaei M, Razavi SH, Hosseini SMH. Investigation of antibacterial activity cinnamon bark essential oil (Cinnamomum zeylanicum) in vitro antibacterial activity against five food spoilage bacteria. Iran J Food Sci Technol. 2012;9(35):67-76. [Persian] [
Link]
4. Abdollahzadeh E, Rezaei M, Hosseini H. Antibacterial activity of plant essential oils and extracts: The role of thyme essential oil, nisin, and their combination to control Listeria monocytogenes inoculated in minced fish meat. Food Control. 2014;35(1):177-83. [
Link] [
DOI:10.1016/j.foodcont.2013.07.004]
5. Oussalah M, Caillet S, Saucier L, Lacroix M. Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157: H7, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control. 2007;18(5):414-20. [
Link] [
DOI:10.1016/j.foodcont.2005.11.009]
6. Ranasinghe L, Jayawardena B, Abeywickrama K. Fungicidal activity of essential oils of Cinnamomum zeylanicum (L.) and Syzygium aromaticum (L.) Merr et LM Perry against crown rot and anthracnose pathogens isolated from banana. Lett Appl Microbiol. 2002;35(3):208-11. [
Link] [
DOI:10.1046/j.1472-765X.2002.01165.x]
7. Ojagh SM, Rezaei M, Razavi SH, Hosseini SMH. Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem. 2010;120(1):193-8. [
Link] [
DOI:10.1016/j.foodchem.2009.10.006]
8. Zhang Y, Ma Q, Critzer F, Davidson PM, Zhong Q. Physical and antibacterial properties of alginate films containing cinnamon bark oil and soybean oil. LWT Food Sci Technol. 2015;64(1):423-30. [
Link] [
DOI:10.1016/j.lwt.2015.05.008]
9. Ma Q, Zhang Y, Zhong Q. Physical and antimicrobial properties of chitosan films incorporated with lauric arginate, cinnamon oil, and ethylenediaminetetraacetate. LWT Food Sci Technol. 2016;65:173-9. [
Link] [
DOI:10.1016/j.lwt.2015.08.012]
10. Fagerlund A, Langsrud S, Schirmer BC, Møretrø T, Heir E. Genome analysis of Listeria monocytogenes sequence type 8 strains persisting in salmon and poultry processing environments and comparison with related strains. PLoS One. 2016;11(3):e0151117. [
Link] [
DOI:10.1371/journal.pone.0151117]
11. Buchanan RL, Gorris LGM, Hayman MM, Jackson TC, Whiting RC. A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control. 2017;75:1-13. [
Link] [
DOI:10.1016/j.foodcont.2016.12.016]
12. Aureli P, Costantini A, Zolea S. Antimicrobial activity of some plant essential oils against listeria monocytogenes. J Food Prot. 1992;55(5):344-8. [
Link] [
DOI:10.4315/0362-028X-55.5.344]
13. Jones N, Ray B, Ranjit KT, Manna AC. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett. 2008;279(1):71-6. [
Link] [
DOI:10.1111/j.1574-6968.2007.01012.x]
14. Xie Y, He Y, Irwin PL, Jin T, Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol. 2011;77(7):2325-31. [
Link] [
DOI:10.1128/AEM.02149-10]
15. Dutta RK, Nenavathu BP, Gangishetty MK. Correlation between defects in capped ZnO nanoparticles and their antibacterial activity. J Photochem Photobiol B. 2013;126:105-11. [
Link] [
DOI:10.1016/j.jphotobiol.2013.07.010]
16. Li X, Xing Y, Jiang Y, Ding Y, Li W. Antimicrobial activities of ZnO powder-coated PVC film to inactivate food pathogens. Int J Food Sci Technol. 2009;44(11):2161-8. [
Link] [
DOI:10.1111/j.1365-2621.2009.02055.x]
17. Vicentini DS, Smania A, Laranjeira MCM. Chitosan/poly (vinyl alcohol) films containing ZnO nanoparticles and plasticizers. Mater Sci Eng. 2010;30(4):503-8. [
Link] [
DOI:10.1016/j.msec.2009.01.026]
18. Shankar Sh, Teng X, Li G, Rhim JW. Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocoll. 2015;45:264-71. [
Link] [
DOI:10.1016/j.foodhyd.2014.12.001]
19. Abdollahzadeh E, Ojagh SM, Hosseini H, Irajian Gh, Ghaemi EA. Prevalence and molecular characterization of Listeria spp. and Listeria monocytogenes isolated from fish, shrimp, and cooked ready-to-eat (RTE) aquatic products in Iran. LWT Food Sci Technol. 2016;73:205-11. [
Link] [
DOI:10.1016/j.lwt.2016.06.020]
20. Valderrama WB, Ostiguy N, Cutter CN. Multivariate analysis reveals differences in biofilm formation capacity among Listeria monocytogenes lineages. Biofouling. 2014;30(10):1199-209. [
Link] [
DOI:10.1080/08927014.2014.980818]
21. Alizadeh H, Salouti M, Shapouri R. Intramacrophage antimicrobial effect of silver nanoparticles against Brucella melitensis 16M. Scientia Iranica. 2013;20(3):1035-8. [
Link]
22. Remmal A, Bouchikhi T, Rhayour K, Ettayebi M, Tantaoui-Elaraki A. Improved method for the determination of antimicrobial activity of essential oils in agar medium. J Essent Oil Res. 1993;5(2):179-84. [
Link]
23. Ma Q, Davidson PM, Zhong Q. Antimicrobial properties of lauric arginate alone or in combination with essential oils in tryptic soy broth and 2% reduced fat milk. Int J Food Microbiol. 2013;166(1):77-84. [
Link] [
DOI:10.1016/j.ijfoodmicro.2013.06.017]
24. Cava-Roda RM, Taboada-Rodríguez A, Valverde-Franco MT, Marín-Iniesta F. Antimicrobial activity of vanillin and mixtures with cinnamon and clove essential oils in controlling listeria monocytogenes and escherichia coli O157:H7 in Milk. Food Bioprocess Technol. 2012;5(6):2120-31. [
Link] [
DOI:10.1007/s11947-010-0484-4]
25. Zhang Y, Liu X, Wang Y, Jiang P, Quek SY. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control. 2016;59:282-9. [
Link] [
DOI:10.1016/j.foodcont.2015.05.032]
26. Gill AO, Holley RA. Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei. Appl Environ Microbiol. 2004;70(10):5750-5. [
Link] [
DOI:10.1128/AEM.70.10.5750-5755.2004]
27. Sarwar S, Chakraborti S, Bera S, Sheikh IA, Hoque KM, Chakrabarti P. The antimicrobial activity of ZnO nanoparticles against Vibrio cholerae: Variation in response depends on biotype. Nanomedicine. 2016;12(6):1499-509. [
Link] [
DOI:10.1016/j.nano.2016.02.006]
28. Venkatasubbu GD, Baskar R, Anusuya T, Seshan CA, Chelliah R. Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens. Colloids Surf B Biointerfaces. 2016;148:600-6. [
Link] [
DOI:10.1016/j.colsurfb.2016.09.042]
29. Wang Sh, Wu J, Yang H, Liu X, Huang Q, Lu Zh. Antibacterial activity and mechanism of Ag/ZnO nanocomposite against anaerobic oral pathogen Streptococcus mutans. J Mater Sci Mater Med. 2017;28(1):23. [
Link] [
DOI:10.1007/s10856-016-5837-8]
30. Lianou A, Stopforth JD, Yoon Y, Wiedmann M, Sofos JN. Growth and stress resistance variation in culture broth among Listeria monocytogenes strains of various serotypes and origins. J Food Prot. 2006;69(11):2640-7. [
Link] [
DOI:10.4315/0362-028X-69.11.2640]
31. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008;4(3):707-16. [
Link] [
DOI:10.1016/j.actbio.2007.11.006]