Volume 7, Issue 2 (2018)                   JFST 2018, 7(2): 109-116 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Masoudi Asil S, Abedian Kenari A, Rahimi mianji G, Van Der Kraak G. Effect of Different Levels of Dietary Arachidonic Acid on Calcium, Thyroid Hormone, and Cortisol Levels in Vitellogenesis and Maturation Stages of Female Blue Gourami (Trichopodus trichopterus, Pallas, 1770). JFST 2018; 7 (2) :109-116
URL: http://jfst.modares.ac.ir/article-6-14861-en.html
1- Fisheries Department, Marine Science Faculty, Tarbiat Modares University, Noor, Mazandaran, Iran
2- Fisheries Department, Marine Science Faculty, Tarbiat Modares University, Noor, Mazandaran, Iran , aabedian@modares.ac.ir
3- Professor, Animal Science Department, Faculty of Animal Sciences and Fisheries, Sari Agricultural and Natural Resources University, Sari, Iran
4- Integrative Biology Department, Biological Science Faculty, University of Guelph, Ontario, Canada
Abstract:   (9172 Views)
Aims: Arachidonic acid is an essential fatty acid that plays an important role in the fish reproduction process by regulating the function of the intravenous system, including the synthesis of steroid hormones. The aim of this study was to evaluate the effect of different levels of dietary arachidonic acid on calcium, thyroid hormone, and cortisol levels in vitellogenesis and maturation stages of female blue gourami (Trichopodus trichopterus).
Materials and Methods: In this applied research, 150 one-month blue gourami were distributed among 15 aquariums (3 replicates for each treatment) and fed with 5 different dietary ARA levels (0.02, 0.53, 1.05, 1.6 and 2.12% of diet) until the completion of maturation over 5 months. After they reached sexual maturity, 12 females from each treatment were selected; calcium level in plasma, cortisol concentrations in serum, and thyroid hormones, triiodothyronine (T3) and thyroxine (T4), were measured in ovary in both vitellogenesis and maturation stages by photometry and ELISA methods, respectively. The data were analyzed by one-way ANOVA after Kolmogorov-Smirnov test. Duncan’s multiple range test was used at 5% level for a meaningful comparison between the means. Pearson correlation coefficient was used to calculate the relationship between arachidonic levels of diet and the measured parameters. All analyses were performed by SPSS 22 software.
Findings: In the vitellogenesis stage, in the treatments with high arachidonic levels, calcium ion had the highest and cortisol hormone had the lowest levels (p<0.05). The level of cortisol in the maturation stage was higher than that of the vitellogenesis and also increased with increasing arachidonic levels. The level of T3 in the ovaries of fish in both stages of vitellogenesis and maturation increased significantly with increasing ARA levels (p<0.05). The level of T4 in the ovaries of the fish did not have a significant relationship with the increase in ARA levels in the vitellogenesis stage, while in the maturation stage, with increasing ARA, the amount of storage of this hormone significantly increased (p<0.05).
Conclusion: Using high levels of arachidonic in the reproduction stage can increase the level of calcium and thyroid hormones and, as a result, improve the vitellogenesis. In the maturation stage, increasing arachidonic levels up to 1.6% increases the levels of cortisol.
Full-Text [PDF 491 kb]   (3642 Downloads)    
Article Type: Research Article | Subject: fish and shellfish physiology
Received: 2017/10/3 | Published: 2018/08/14

References
1. S Izquierdo M, Ferna׳ndez-Palacios H, J Tacon AG. Effect of broodstock nutrition on reproductive performance of fish. Aquaculture. 2001;197(1-4):25-42. [Link] [DOI:10.1016/S0044-8486(01)00581-6]
2. Norambuena F, Estévez A, Ma-anós E, Gordon Bell J, Carazo I, Duncan N. Effects of graded levels of arachidonic acid on the reproductive physiology of senegalese sole (Solea senegalensis): Fatty acid composition, prostaglandins and steroid levels in the blood of broodstock bred in Captivity. Gen Comp Endocrinol. 2013;191:92-101. [Link] [DOI:10.1016/j.ygcen.2013.06.006]
3. Furuita H, Hori K, Suzuki, Sugita T, Yamamoto T. Effect of n-3 and n-6 fatty acids in broodstock diet on reproduction and fatty acid composition of broodstock and eggs in the Japanese eel Anguilla japonica. Aquaculture. 2007;267(1-4):55-61. [Link] [DOI:10.1016/j.aquaculture.2007.01.039]
4. Mercure F, Van Der Kraak G. Mechanisms of Action of Free Arachidonic acid on ovarian steroid production in the Goldfish. Gen Comp Endocrinol. 1996;102(1):130-40. [Link] [DOI:10.1006/gcen.1996.0054]
5. Norberg B, Kleppe L, Andersson E, Thorsen A, Rosenlund G, Hamre K. Effects of dietary arachidonic acid on the reproductive physiology of female Atlantic cod (Gadus morhua L.). Gen Comp Endocrinol. 2017;250:21-35. [Link] [DOI:10.1016/j.ygcen.2017.05.020]
6. Michael AE, Pester LA, Curtis P, Shaw RW, Edwards CRW, Cooke BA. Direct inhibition of ovarian steroidogenesis by Cortisol and the modulatory role of 11β-hydroxysteroid dehydrogenase. Clin Endocrinol. 1993;38(6):641-4. [Link] [DOI:10.1111/j.1365-2265.1993.tb02147.x]
7. Lund I, Steenfeldt SJ. The Effects of dietary long-chain essential fatty acids on growth and stress tolerance in pikeperch larvae (Sander lucioperca L.). Aquac Nutr. 2011;17(2):191-9. [Link] [DOI:10.1111/j.1365-2095.2009.00724.x]
8. Martins DA, Rocha F, Castanheira F, Mendes A, Pousão-Ferreira P, Bandarra N, et al. Effects of dietary arachidonic acid on cortisol production and gene expression in stress response in Senegalese sole (Solea senegalensis) post-larvae. Fish Physiol Biochem. 2013;39(5):1223-38. [Link] [DOI:10.1007/s10695-013-9778-6]
9. Milla S, Wang N, Mandiki SN, Kestemont P. Corticosteroids: Friends or foes of teleostfish reproduction? Comp Biochem Physiol A Mol Integr Physiol. 2009;153(3):242-51. [Link] [DOI:10.1016/j.cbpa.2009.02.027]
10. Nangalama AW, Moberg GP. Interaction between cortisol and arachidonic acid on the secretion of lh from ovine pituitary tissue. J Endocrinol. 1991;131(1):87-94. [Link] [DOI:10.1677/joe.0.1310087]
11. Chang JP, Graeter J, Catt KJ. Dynamic actions of arachidonic acid and protein kinase C in pituitary stimulation by gonadotropin-releasing hormone. Endocrinology. 1987;120(5):1837-45. [Link] [DOI:10.1210/endo-120-5-1837]
12. Nelson ER, Habibi HR. Thyroid receptor subtypes: Structure and function in fish. Gen Comp Endocrinol. 2009;161(1):90-6. [Link] [DOI:10.1016/j.ygcen.2008.09.006]
13. Raine JC, Leatherland JF. Morphological and functional development of the thyroid tissue in rainbow trout (Oncorhynchus mykiss) embryos. Cell Tissue Res. 2000;301(2):235-44. [Link] [DOI:10.1007/s004410000237]
14. Radke WJ, Albasi CM, Harvey S. Haemorrhage and adrenocortical activity in the fowl (Gallus domesticus). Gen Comp Endocrinol. 1985;60(2):204-9. [Link] [DOI:10.1016/0016-6480(85)90315-6]
15. Biswas A, Kundu S, Roy S, De J, Pramanik M, Ray AK. Thyroid hormone profile during annual reproductive cycle of diploid and triploid catfish, Heteropneustes fossilis (Bloch). Gen Comp Endocrinol 2006;147(2):126-32. [Link] [DOI:10.1016/j.ygcen.2005.12.012]
16. Degani G. Oogenesis control in multispawning blue gourami (Trichogaster trichopterus) as a model for the Anabantidae family. Int J Sci Res. 2016;5(7):16-21. [Link]
17. Degani G. Reproduction control in multi-spawning asynchronic Trichogaster trichopterus (Pallas) as a model for the anabantidae family. Trends Comp Biochem Physiol. 1993;1:1269-75. [Link]
18. Masoudi Asil Sh, Abedian Kenari AM, Rahimi Miyanji G, Van Der Kraak G. The influence of dietary arachidonic acid on growth, reproductive performance, and fatty acid composition of ovary, egg and larvae in an anabantid model fish, Blue gourami (Trichopodus trichopterus, Pallas, 1770). Aquaculture. 2017;476:8-18. [Link] [DOI:10.1016/j.aquaculture.2017.03.048]
19. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226(1):497-509. [Link]
20. Mommsen TP, Walsh PJ. 5 Vitellogenesis and Oocyte assembly. Fish Physiol. 1988;11(Part A):347-406. [Link]
21. Røjbek MC, Støttrup JG, Jacobsen C, Tomkiewicz J, Nielsen A, Trippel EA. Effects of dietary fatty acids on production and quality of eggs and larvae of Atlantic cod (Gadus morhua L.). Aquac Nutr. 2014;20(6):654-66. [Link] [DOI:10.1111/anu.12124]
22. Meves H. Arachidonic acid and ion channels: An update. Br J Pharmacol. 2008;155(1):4-16. [Link] [DOI:10.1038/bjp.2008.216]
23. Muslikhov ER, Sukhanova IF, Avdonin PV. Arachidonic acid activates release of calcium ions from reticulum via ryanodine receptor channels in C2C12 skeletal myotubes. Biochemistry (Mosc). 2014;79(5):435-9. [Link] [DOI:10.1134/S0006297914050071]
24. Westring CG, Ando H, Kitahashi T, Bhandari RK, Ueda H, Urano A, et al. Seasonal changes in CRF-I and urotensin i transcript levels in masu salmon: Correlation with cortisol secretion during spawning. Gen Comp Endocrinol. 2008;155(1):126-40. [Link] [DOI:10.1016/j.ygcen.2007.03.013]
25. Cleary JJ, Pankhurst NW, Battaglene SC. The effect of capture and handling stress on plasma steroid levels and gonadal condition in wild and farmed snapper Pagrus auratus (Sparidae). J World Aquac Soc. 2000;31(4):558-69. [Link] [DOI:10.1111/j.1749-7345.2000.tb00905.x]
26. Lethimonier C, Flouriot G, Valotaire Y, Kah O, Ducouret B. Transcriptional interference between glucocorticoid receptor and estradiol receptor mediates the inhibitory effect of cortisol on fish vitellogenesis. Biol Reprod. 2000;62(6):1763-71. [Link] [DOI:10.1095/biolreprod62.6.1763]
27. Kime DE, Dolben IP. Hormonal changes during induces ovulation of the carp Cyprinus carpio. Gen Comp Endocrinol. 1985;58(1):137-49. [Link] [DOI:10.1016/0016-6480(85)90147-9]
28. Eales JG, Brown, SB. Measurement and regulation of thyroidal status in teleost fish. Rev Fish Biol Fish. 1993;3(4):299-347. [Link] [DOI:10.1007/BF00043383]
29. Lachowicz K, Koszela-Piotrowska I, Rosołowska-Huszcz D. Thyroid hormone metabolism may depend on dietary fat. J Anim Feed Sci, 2008;17(1):110-9. [Link] [DOI:10.22358/jafs/66475/2008]
30. Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM. 15-Deoxy-Δ12, 14-Prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ. Cell. 1995;83(5):803-12. [Link] [DOI:10.1016/0092-8674(95)90193-0]
31. Kasai K, Banba N, Hishinuma A, Matsumura M, Kakishita H, Matsumura M et al. 15-Deoxy-Δ12,14-prostaglandin J2facilitates thyroglobulin production by cultured human thyrocytes. Am J Physiol Cell Physiol. 2000;279(6):C1859-69. [Link] [DOI:10.1152/ajpcell.2000.279.6.C1859]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.