بررسی خاصیت ضد باکتریایی نانو اکسید روی و نانو اکسید مس بر برخی عوامل باکتریایی بیماری زا در ماهی و تعیین درجه سمیت آنها برای قزل آلای رنگین کمان

نوع مقاله : پژوهشی اصیل

نویسندگان
بخش علوم درمانگاهی، دانشکده دامپزشکی، دانشگاه شیراز.
چکیده
تحقیق پیش رو با هدف بررسی سمیت نانو اکسید مس (CuO) و نانو اکسید روی (ZnO) در شرایط آزمایشگاهی بر روی برخی باکتری­ های بیماری­ زا در ماهیان پرورشی و همچنین زیست سنجی در قزل آلای رنگین کمان انجام شده است. بدین منظور، حساسیت برخی از آنها نسبت به نانوذرات اشاره شده به همراه یک آنتی بیوتیک مرجع (فلورفنیکل) از طریق روش نفوذ چاهی، و مقادیر حداقل غلظت مهارکنندگی (MIC)/ حداقل غلظت باکتری کشی (MBC) آنها با تکنیک Microdilution تعیین شدند. از سویی دیگر، آزمایش­ سمیت کشنده به جهت محاسبه میانه غلظت کشنده (LC50) بر روی تعدادی قزل ­آلای رنگین کمان (g 6/7 ± 3/55) به صورت ایستایی و در 96 ساعت متوالی انجام شد. برای تجزیه و تحلیل آماری داده­ ها از تجزیه واریانس و رگرسیون پروبیت بهره گرفته شد. یافته ­ها حاکی از این بودند که نانوذرات اکسید مس و اکسید روی به ترتیب در رقت­ های بیشتر از µg/ml 18/0 و 24/0 توانستند که رشد Streptococcus iniae را به طور معنی­داری مهار نمایند یا آن را از بین ببرند. مقایسه مقادیر LC50-96h نانو اکسید روی (µg/l 4/107) با نانو اکسید مس (µg/l 3/102) نشان می­دهد که نانو اکسید مس از ظرفیت مسموم کنندگی بیشتری برخوردار است. بر اساس یافته ­های آزمایشگاهی، حساسیت باکتری­های S. iniae و Lactococcus garvieae به نانو اکسید روی تقریبا نزدیک به فلورفنیکل بوده است. ولی به نظر می­رسد که بکارگیری مستقیم غلظت موثر نانوذرات فلزی بر عوامل باکتریایی بیماری­ زا میت­واند سبب بروز مرگ و میر ناشی از مسمومیت در ماهی قزل­آلا شود.
کلیدواژه‌ها

موضوعات


1- Hahm DH, Yeom MJ, Lee EH, Shim I, Lee HJ, Kim HY. 2001. Effect of scutellariae radix as a novel antibacterial herb on the ppk (polyphosphate kinase) mutant of Salmonella typhimurium, Journal of Microbiology and Biotechnology 11 (6):1061-5.
2- Mozahhab N. 2014. Antimicrobial effect of zinc oxide nanoparticles on luminescence bacteria (Vibrio species) isolated from shrimp ponds on the southeast of Iran. MSc Thesis, Biology Department, Ferdowsi University of Mashhad. [In Persian]
3- Zhang L, Jiang Y, Ding Y, Daskalakis N, Jeuken L, Povey M. 2010. Mechanistic Investigation Into Antibacterial Behaviour Of Suspensions Of Zno Nanoparticles Against E. Coli, Journal of Nanoparticle Research 12(5): 1625-1636.
4- Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A. 2008. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans daphnia dagna and Thamnocephalus platyurus, Chemosphere 71(7): 1308-1316.
5- Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X. 2007. Preparation and antibacterial activity of Fe O @Agnanoparticles, Nanotechnology 18: 604-611.
6- Soltani M, Ghodratnema M, Ahari H, Ebrahimzadeh mousavi HA, Atee M, Dastmalchi F, Rahmanya J. 2009. The inhibitory effect of silver nanoparticles on the bacterial fish pathogens, Streptococcus iniae, Lactococcus garvieae, Yersinia ruckeri and Aeromonas hydrophila, Journal of Veterinary Research 3(2):137-142.
7- Ravikumar S, Gokulakrishnan R, Raj JA. 2012. Nanoparticles as a source for the treatment of fish diseases, Asian Pacific Journal of Tropical Disease. S703-S706.
8- Rai M, and Yadav A. 2009. Silver Nanoparticles As A New Generation Of Antimicrobials, Biotechnology Advances, 27, 1: 76-83.
9- Hoseinzadeh E, Alikhani MY, Samarghandy MR. 2012. Evaluation of Synergistic Effect of Commercial Zinc Oxide and Copper Oxide Nanoparticles against Gram Positive and Gram Negative Bacteria by Fraction Inhibitory Concentration Index. Journal of Zanjan University of Medical Sciences. 20 (82): 31-43. [In Persian]
10- Padmavathy N, Vijayaraghavan R. 2008. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study, Science and Technology of Advanced Material 9: 7.
11- Rajendran R, Balakumar C, Hasabo AMA, Jayakumar S, Vaideki K, Rajesh EM. 2010. Use of zinc oxide nano particles for production of antimicrobial textiles, International Journal of Engineering Science and Technology 2(1): 202-208.
12- Haritha M. Meena V. Chaitanya S.C Srinivasa Rao B. 2011. Synthesis and characterization of zinc oxide nanoparticles and its antimicrobial activity against Bacillus subtilis and Escherichia coli, Rasayan Journal of Chemistry 4(1): 217-222.
13- Toolabi A, Zare MR, Rahmani A, Zare M, Asadi A, Sarkhosh M, Hossinzadeh E, Abedinejad M. 2013 Comparison and determination of probable toxicity of ZnO nanoparticle by four current bacteria in wastewater sludge. Journal of North Khorasan University of Medical Sciences. 5(2): 397-403. [In Persian]
14- Naddafi K, Zare MR, Younesian M, Rastkari N, Alimohammadi M, Mousavi N. 2011. Bioassay for Toxicity Assessment of Zinc Oxide and Titanium Oxide to Escherichia Coli ATCC 35218 and Staphylococcus Aureus ATCC 25923 Bacteria. Iranian Journal of Health & Environment. 4(2): 171-180. [In Persian]
15- Shaffiey SF, Ahmadi M, Shaffiey SR, Shapoori M, Varshoie H, Azari, F. 2015. Synthesis of Copper Oxide (CuO) Nanoparticles and Surveying Its Bactericidal Properties against Aeromonas Hydrophila Bacteria. Journal of Fasa University of Medical Sciences. 5(1): 36-43. [In Persian]
16- Khosravi-Katuli K, Prato E, Lofrano G, Guida M, Vale G, Libralato G. 2017. Effects of nanoparticles in species of aquaculture interest, Environmental Science and Pollution Research 24(11): 17326-17346. https://doi.org/10.1007/s11356-017-9360-3.
17- Khosravi-Katuli K, Massarsky A, Hadadi A, Pourmehrand Z. 2014. Silver nanoparticles inhibit the gill Na+/K+-ATPase and erythrocyte AChE activities and induce the stress response in adult zebrafish (Danio rerio), Ecotoxicology and Environmental Safety 106: 173-180. https://doi.org/10.1016/j.ecoenv.2014.04.001.
18- Khosravi-Katuli K, Lofrano G, Pak Nezhad H, Giorgio A, Guida M, Aliberti F, Siciliano A, Carotenuto M, Galdiero E, Rahimi E, Libralato G. 2018. Effects of ZnO nanoparticles in the Caspian roach (Rutilus rutilus caspicus), Science of Total Environment 626: 30-41. https://doi.org/10.1016/j.scitotenv.2018.01.085.
19- Alishahi M, Mesbah M, Ghorbanpoor M. 2011. Assessment of toxicity of Nano silver on four fish species. Iranian Journal of Veterinary Medicine. 7(1): 36-41. [In Persian]
20- Al-megran H. 2005. Comparision of bulk Co-Mo bimetallic carbide, oxide, nitride and sulfide catalyst for pyridine hydrodenitrogenation, Journal of molecularcatalyst 225:143-148.
21- Akhlaghi M, Mahjor AA. 2004. Some histopathological aspects of streptococcusis cultured rainbow trout, Bulletin of European Association of Fish Pathologists 24, 3:132-136.
22- Akhlaghi M, Sharifiyazdi H. 2008. Detection and identification of virulent Yersinia ruckeri: the causative agnt of enteric redmouth disease in rainbow trout, Iranian Journal of Veterinary Research 9:347-352.
23- Sharifiyazdi H, Akhlaghi M, Tabatabaei M, and Mostafavi Zadeh SM. 2010. Isolation and Characterization of Lactococcus garvieae from diseased rainbow trout (Oncorhynchus mykiss) cultured in Iran, Iranian Journal of Veterinay Research 11: 342-350. https://doi.org/10.22099/ijvr.2010.105.
24- Modarres Mousavi Behbahani S, Akhlaghi M, Sharifiyazdi H. 2014. Phenotypic and genetic diversity of motile aeromonads isolated from diseased fish and fish farms Iranian, Journal of Veterinary Research 15: 238-243.
25- Ruparelia J, Chatterjee A, Duttagupta S, Mukherji S. 2008. Strain specificity in antimicrobial activity of silver and copper nanoparticles, Journal of Acta Biomaterialia 4: 707-16.
26- Azam A, Ahmed A, Oves M, Khan MS, Memic M. 2012. Size dependent antimicrobial properties of CuO nanoparticles against Gram-positive and –negative bacterial strains, International Journal of Nanomedicine 7(1): 3527-3535.
27- Tsai T, Tsai T, Chien Y, Lee C, Tsai P. 2008. In vitro antimicrobial activities against cariogenic streptococci and their antioxidant capacities: A comparative study of green tea versus differentherbs, Food Chemistry 110, 4: 859-64.
28- Eaton A, Clesceri L & Greenberg A. 2005. Standard methods for the examination of water and wastewater. Washington. DC: APHA, AWWA and WEF.
29- Gholami Seyedkolaee, S. J., Shiry, N., Mirvaghefi, A. R., Rafiee, G. R., Makhdomi, C. 2013. Toxicity evaluation of Malathion, Carbaryle and Glyphosate in common carp fingerlings (Cyprinus carpio, Linnaeus, 1758). Journal of Veterinary Research, 68(3): 257-267. [In Persian]
30- Scown TM, Santos EM, Johnston BD, Gaiser B, Baalousha M, Mitov S, Lead JR, Stone V, Fernandes TF, Jepson M. 2010. Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout, Toxicological Science 115, 521–534.
31- Organisation for Economic Co-operation and Development (OECD). 1992. Guidelines for the Testing of Chemicals Fish, Acute Toxicity Test No. 203 Section 2, OECD Publishing.doi: 10.1787/9789264069961-en.
32- Reed LJ, Muench H. 1938. Asimplemethod ofestimating fiftypercentendpoints, American Journal of Epidemiology 27: 493–497, https://doi.org/10.1093/oxfordjournals.aje. a118408.
33- Shiry, N., Khoshnoodifar, K., Mirvaghefi, A. R. 2014. Toxicity and impacts of Malathion on some blood indices in Caspian common carp (Cyprinus carpio). Journal of Fisheries Science and Technology. 3(2): 1-11. [In Persian]
34- Sahebdelfar S, Rezaie M., Yaripour F. 2011. Nanocatalysts (1st ed.), Academic books press, Tehran, 368p. [In Persian]
35- Shiry N, Shomali T, Soltanian S, Akhlaghi M. 2018. Comparative single-dose pharmacokinetics of orally administered florfenicol in rainbow trout (Oncorhynchus mykiss, Walbaum, 1792) at health and experimental infection with Streptococcus iniae or Lactococcus garvieae, Journal of Veterinary Pharmacology and Therapeutics 41(6): 51-64. https://doi.org/10.1111/jvp.12736.
36- Veisi Malekshahi, Z., Afshar D, Ranjbar R, Shirazi MH, Rezaee F, Mahjoobi R, Pakbaz,Z, Haji Khani S, 2012. Antimicrobial effect of ZnO Nanoparticle. Journal of Infectious and Tropical Diseases. 17(59): 1-4. [In Persian]
37- Mollaabbas Zadeh H, Modir Roosta S, Reza Soltani S, Najafian M. 2010. Toxicity of ZnO, CuO and TiO2 nanoparticles on Vibrio Fiscari bacteria. First National Conference of Nano Sciences and Technologies. [In Persian]
38- Mohammadbeigi P, Sodagar M, Mazandarani M, Hoseini SS. 2016. An investigation of antibacterial activity of ZnO nanoparticle on Streptococcus iniae and Escheria coli. Journal of Qum University of Medical Sciences. 10 (5): 55-63. [In Persian]
39- Griffitt RJ, Hyndman K, Denslow N.D. Barber DS. 2009. Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles, Toxicology Science 107, 404–415.
40- Bilberg K, Malte H, Wang T, Baatrup E, 2010. Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis), Aquatic Toxicology 96, 159–165.