Volume 8, Issue 2 (2019)                   JFST 2019, 8(2): 59-63 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fatan B, Ahmadi Gavlighi H, Sahari M. Effect of Molecular Weight of Isolated Protein Hydrolysate from Sardinella sindensis Obtained Using Pancratin on the Anti-Oxidative and Anti-Diabetic Properties. JFST 2019; 8 (2) :59-63
URL: http://jfst.modares.ac.ir/article-6-33641-en.html
1- Food Science & Technology Department, Agricultural Faculty, Tarbiat Modares University, Tehran, Iran
2- Food Science & Technology Department, Agricultural Faculty, Tarbiat Modares University, Tehran, Iran , ahmadi_ha@modares.ac.ir
Abstract:   (4663 Views)
Aims: The purpose of the present study was to hydrolyze Sardinella sindensis protein isolate by pancreatin enzyme and then fractionation hydrolysate based on molecular weight and finally evaluating and comparing the anti-oxidative and anti-diabetic properties of the fractions with hydrolysate.
Materials & Methods: Protein isolate from Sardinella sindensis muscle was extracted and then hydrolyzed using pancreatin enzyme in two enzyme/substrate ratio of 2.5 and 5% (W/W) for 2h. The hydrolysates were fractionated into three fractions included FPH-I (<2kDa), FPH-II (2-10kDa) and FPH-III (>10kDa) using an ultrafiltration (UF) membranes. The antioxidant and anti-diabetic activiteis of the fractions and hydrolysate were investigated.
Findings: The degree of hydrolysis increased with increasing hydrolysis time and it was significant between 30 and 60 minutes (p<0.05). FPH-III showed the highest DPPH radical scavenging activity. In terms of chelating activity on Fe2+, there was no significant difference between the fractions and hydrolysate (p>0.05). Also, FPH-III showed a better ABTS radical-scavenging activity. FPH-III had the highest inhibitory potential against α-amylase at 2.5%. In addition, the inhibitory effect of samples at 20mg/ml against α-glucosidase was less than 50%.
Conclusion: FPH-III from Sardinella sindensis protein isolate by pancreatin enzyme had the highest DPPH radical scavenging, ABTS+ activity and alpha-amylase inhibitory.
 
Full-Text [PDF 481 kb]   (2915 Downloads)    
Article Type: Original Research | Subject: Bioactive compounds
Received: 2018/06/8 | Published: 2019/06/20

References
1. Cui-Feng ZH, Guan-Zhi LI, Hong-Bin PE, Zhang F, Yun CH, Yong LI. Effect of marine collagen peptides on markers of metabolic nuclear receptors in type 2 diabetic patients with/without hypertension. Biomed Environ Sci. 2010;23(2):113-20. [Link] [DOI:10.1016/S0895-3988(10)60040-2]
2. Patil P, Mandal S, Tomar SK, Anand S. Food protein-derived bioactive peptides in management of type 2 diabetes. Eur J Nutr. 2015;54(6):863-80. [Link] [DOI:10.1007/s00394-015-0974-2]
3. Yu L, Haley S, Perret J, Harris M, Wilson J, Qian M. Free radical scavenging properties of wheat extracts. J Agric Food Chem. 2002;50(6):1619-24. [Link] [DOI:10.1021/jf010964p]
4. Kim SK, editor. Marine proteins and peptides: Biological activities and applications. Hoboken: John Wiley & Sons; 2013. [Link] [DOI:10.1002/9781118375082]
5. Meisel H, FitzGerald RJ. Biofunctional peptides from milk proteins: Mineral binding and cytomodulatory effects. Curr Pharm Des. 2003;9(16):1289-96. [Link] [DOI:10.2174/1381612033454847]
6. Jeon YJ, Byun HG, Kim SK. Improvement of functional properties of cod frame protein hydrolysates using ultrafiltration membranes. Process Biochem. 1999;35(5):471-8. [Link] [DOI:10.1016/S0032-9592(99)00098-9]
7. Harnedy PA, FitzGerald RJ. Bioactive peptides from marine processing waste and shellfish: A review. J Funct Foods. 2012;4(1):6-24. [Link] [DOI:10.1016/j.jff.2011.09.001]
8. Chabeaud A, Vandanjon L, Bourseau P, Jaouen P, Chaplain-Derouiniot M, Guérard F. Performances of ultrafiltration membranes for fractionating a fish protein hydrolysate: Application to the refining of bioactive peptidic fractions. Sep Purif Technol. 2009;66(3):463-71. [Link] [DOI:10.1016/j.seppur.2009.02.012]
9. Saidi S, Deratani A, Belleville MP, Amar RB. Production and fractionation of tuna by-product protein hydrolysate by ultrafiltration and nanofiltration: Impact on interesting peptides fractions and nutritional properties. Food Res Int. 2014;65(Part C):453-61. [Link] [DOI:10.1016/j.foodres.2014.04.026]
10. Abdollahi M, Rezaei M, Jafarpour SA. Gel forming and physico-chemical properties of protein recovered from whole and gutted common kilka (Clupeonella cultriventris). J Fish Sci Technol. 2015;4(3):102-17. [Persian] [Link]
11. Van Zaling NP, Owfi F, Ghasemi S, Khorshidian K, Niamaimandi N. Resources of small pelagic in Iranian waters, a review. Rome: Food and Agriculture Organisation; 1993. [Link]
12. Hultin HO, Kristinsson HG, Lanier TC, Park JW. Process for recovery of functional proteins by pH shifts. In: Park JW. Surimi and surimi seafood. 2nd Edition. Didcot: Taylor & Francis; 2005. pp. 107-39. [Link] [DOI:10.1201/9781420028041.ch3]
13. Klompong V, Benjakul S, Kantachote D, Hayes KD, Shahidi F. Comparative study on antioxidative activity of yellow stripe trevally protein hydrolysate produced from Alcalase and Flavourzyme. Int J Food Sci Technol. 2008;43(6):1019-26. [Link] [DOI:10.1111/j.1365-2621.2007.01555.x]
14. Adler-Nissen J. Enzymic hydrolysis of food proteins. Essex: Elsevier Applied Science Publishers; 1986. [Link]
15. Nanjo F, Goto K, Seto R, Suzuki M, Sakai M, Hara Y. Scavenging effects of tea catechins and their derivatives on 1, 1-diphenyl-2-picrylhydrazyl radical. Free Radic Biol Med. 1996;21(6):895-902. [Link] [DOI:10.1016/0891-5849(96)00237-7]
16. Decker EA, Welch B. Role of ferritin as a lipid oxidation catalyst in muscle food. J Agric Food Chem. 1990;38(3):674-7. [Link] [DOI:10.1021/jf00093a019]
17. Thetsrimuang Ch, Khammuang S, Chiablaem K, Srisomsap Ch, Sarnthima R. Antioxidant properties and cytotoxicity of crude polysaccharides from Lentinus polychrous Lév. Food Chem. 2011;128(3):634-9. [Link] [DOI:10.1016/j.foodchem.2011.03.077]
18. Kim KT, Rioux LE, Turgeon SL. Alpha-amylase and alpha-glucosidase inhibition is differentially modulated by fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum. Phytochemistry. 2014;98:27-33. [Link] [DOI:10.1016/j.phytochem.2013.12.003]
19. McDougall GJ, Shpiro F, Dobson P, Smith P, Blake A, Stewart D. Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase. J Agric Food Chem. 2005;53(7):2760-6. [Link] [DOI:10.1021/jf0489926]
20. Diniz FM, Martin AM. Optimization of nitrogen recovery in the enzymatic hydrolysis of dogfish (Squalus acanthias) protein. Composition of the hydrolysates. Int J Food Sci Nutr. 1997;48(3):191-200. [Link] [DOI:10.3109/09637489709012592]
21. Wu HC, Chen HM, Shiau CY. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res Int. 2003;36(9-10):949-57. [Link] [DOI:10.1016/S0963-9969(03)00104-2]
22. Hsu KC, Lu GH, Jao CL. Antioxidative properties of peptides prepared from tuna cooking juice hydrolysates with orientase (Bacillus subtilis). Food Res Int. 2009;42(5-6):647-52. [Link] [DOI:10.1016/j.foodres.2009.02.014]
23. Dong Sh, Zeng M, Wang D, Liu Z, Zhao Y, Yang H. Antioxidant and biochemical properties of protein hydrolysates prepared from Silver carp (Hypophthalmichthys molitrix). Food Chem. 2008;107(4):1485-93. [Link] [DOI:10.1016/j.foodchem.2007.10.011]
24. Batista I, Ramos C, Coutinho J, Bandarra NM, Nunes ML. Characterization of protein hydrolysates and lipids obtained from black scabbardfish (Aphanopus carbo) by-products and antioxidative activity of the hydrolysates produced. Process Biochem. 2010;45(1):18-24. [Link] [DOI:10.1016/j.procbio.2009.07.019]
25. Chalamaiah M, Hemalatha R, Jyothirmayi T. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: a Review. Food Chem. 2012;135(4):3020-38. [Link] [DOI:10.1016/j.foodchem.2012.06.100]
26. Nalinanon S, Benjakul S, Kishimura H, Shahidi F. Functionalities and antioxidant properties of protein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna. Food Chem. 2011;124(4):1354-62. [Link] [DOI:10.1016/j.foodchem.2010.07.089]
27. Gan KH, Heijerman HG, Geus WP, Bakker W, Lamers CB. Comparison of a high lipase pancreatic enzyme extract with a regular pancreatin preparation in adult cystic fibrosis patients. Aliment Pharmacol Ther. 1994;8(6):603-7. [Link] [DOI:10.1111/j.1365-2036.1994.tb00337.x]
28. Zhong S, Ma Ch, Lin YC, Luo Y. Antioxidant properties of peptide fractions from silver carp (Hypophthalmichthys molitrix) processing by-product protein hydrolysates evaluated by electron spin resonance spectrometry. Food Chem. 2011;126(4):1636-42. [Link] [DOI:10.1016/j.foodchem.2010.12.046]
29. Giménez B, Alemán A, Montero P, Gómez-Guillén MC. Antioxidant and functional properties of gelatin hydrolysates obtained from skin of sole and squid. Food Chem. 2009;114(3):976-83. [Link] [DOI:10.1016/j.foodchem.2008.10.050]
30. Matsui T, Oki T, Osajima Y. Isolation and identification of peptidic α-glucosidase inhibitors derived from sardine muscle hydrolyzate. Zeitschrift für Naturforschung C. 1999;54(3-4):259-63. [Link] [DOI:10.1515/znc-1999-3-417]
31. Saidi S, Deratani A, Belleville MP, Amar RB. Production and fractionation of tuna by-product protein hydrolysate by ultrafiltration and nanofiltration: Impact on interesting peptides fractions and nutritional properties. Food Res Int. 2014;65(Part C):453-61. [Link] [DOI:10.1016/j.foodres.2014.04.026]
32. He R, Girgih AT, Malomo SA, Ju X, Aluko RE. Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. J Funct Foods. 2013;5(1):219-27. [Link] [DOI:10.1016/j.jff.2012.10.008]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.