بررسی خصوصیات فیزیکوشیمیایی و حسی پروتئین ایزوله ضایعات ماهی قزل آلای رنگین کمان (Oncorhynchus mykiss) به روش تغییر pH

نوع مقاله : پژوهشی اصیل

نویسندگان
چکیده
هدف از این تحقیق تولید ایزوله پروتئینی از ضایعات ماهی قزل­آلای رنگین کمان و بررسی خواص تغذیه­ای، ساختاری، کاربردی و حسی آن بود. ایزوله پروتئین ماهی با روش تغییر pH با استفاده از pHهای قلیایی و اسیدی تولید گردید. پروتئین استخراج شده از نظر ارزش غذایی، خواص کارکردی، خواص حسی، رنگ و تغییرات ساختاری مورد بررسی قرار گرفت. پروتئین­های استخراج شده ارزش غذایی نسبتا" بالایی را در مقدار اسید آمینه ضروری نشان دادند. میزان حلالیت ، ژل­دهی و ظرفیت کف­کنندگی پروتئین­ها به طور معنی­درای به pH آن بستگی داشت. به طوری که درصد حلالیت و ظرفیت کف­کنندگی پروتئین­های استخراج شده در شرایط قلیایی میزان بالاتری را نسبت به شرایط اسیدی نشان داد در حالیکه کمترین غلظت تولید ژل مربوط به pH ۵/۱۱ بود. بررسی و مقایسه خصوصیات رنگی و حسی پروتئین­های ایزوله شده نشان داد که در pH اسیدی رنگ روشنتر و سفیدتر و خواص حسی بهتری را نسبت به پروتئین­های ایزوله شده در pH قلیایی داشتند. تغییر pH باعث تخریب گسترده پروتئین شد که توسط FTIR و SEM نشان داده شد. نتایج فوق نشان داد ایزوله پروتئین ضایعات ماهی قزل­آلای رنگین کمان تولید شده دارای ویژگی­های عملکردی و تغذیه­ای مناسبی در شرایط قلیایی است در حالی خواص حسی و رنگ شرایط اسیدی نتایج بهتری را نشان داد.
کلیدواژه‌ها

موضوعات


1. Aspevik T, Totland C, Lea P. Sensory and surface-active properties of protein hydrolysates based on Atlantic salmon (Salmo salar) by-products. Process Biochem. 2016;51(8):1006-14.
2. Bhaskar N, Benila T, Radha C, Lalitha RG. Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Bioresour Technol. 2008;99(2):335-43.
3. Lin H, Shang-gui D, Zhang B, Pang J. Separation, structure identification and antimicrobial activity of ferrous chelate of protein hydrolysate in hairtail (Hrichiurus Haumela). J Single Mol Res. 2013;1(1):2-6.
4. Abdollahi M, Undeland I. Structural, functional, and sensorial properties of protein isolate produced from salmon, cod, and herring by-products. Food Bioprocess Tech. 2018;11:1733–49.
5. Xu Y, Co;da R, Holopainen-Mantila U, Laitila A, Katina K, Tenkanen M. Impact of in situ produced exopolysaccharides on rheology and texture of fava bean protein concentrate. Food Res Int. 2019;115:191-199.
6. Zhang QT, Tu ZC, Wang H, Huang X, Fan LL, Bao ZY, et al. Functional properties and structure changes of soybean protein isolate after subcritical water treatment. J Food Sci Tech. 2015;52(6):412–21.
7. Wang R, Xu P, Chen Z, Zhou X, Wang T. Complexation of rice proteins and whey protein isolates by structural interactions to prepare soluble protein composites. LWT-Food Sci Tech. 2019;101:207–13.
8. Bogahawaththa D, Hoang Bao Chau N, Trivedi J, Dissanayake M, Vasiljevic T. Impact of selected process parameters on solubility and heat stability of pea protein isolate. LWT-Food Sci Tech. 2019;102:246–53.
9. Chen W, Wang W, Ma X, Lv R, Watharkara R, Dinga T, et al. Effect of pH-shifting treatment on structural and functional properties of whey protein isolate and its interaction with (−)-epigallocatechin-3-gallate. Food Chem. 2019;274:234–41.
10. Xiong T, Xiong W, Ge M, Xia J, Li B, Chen Y. Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Res Int. 2018; 109:260–67.
11. Sathivel S, Bechtel PJ, Babbitt J, Prinyawiwatkul W, Negulescu II, Reppond KD. Properties of protein powders from arrowtooth flounder (Atheresthes stomias) and herring (Clupea harengus) byproducts. J Agric Food Chem. 2004;52:5040–46.
12. Shaviklo GR, Thorkelsson G, Arason S, Sveinsdottir K. Characteristics of freeze-dried fish protein isolated from saithe (Pollachius virens). J food sci tech. 2012;49(3):309–18.
13. Córdova-Murueta JH, García-Carreño FL, Navarrete-del-Toro MÁ. pH-Solubilzation Process as an Alternative to Enzymatic Hydrolysis Applied to Shrimp Waste. Turk J Fish Aquat Sc. 2013;13:639-46.
14. Tian J, Wang Y, Zhu Z, Zeng Q, Xin M. Recovery of Tilapia (Oreochromis niloticus) Protein isolate by high-intensity ultrasound-aided alkaline isoelectric solubilization/precipitation process. Food Bioproc Tech. 2015;8:758–769.
15. Chomnawang C, Yongsawatdigul J. Protein Recovery of Tilapia Frame By-Products by pH-Shift Method. J Aquat Food Prod Technol. 2013;22(2):112-20.
16. Anema SG, Pinder DN, Hunter RJ, Hemar Y. Effects of storage temperature on the solubility of milk protein concentrate (MPC85). Food Hydrocoll. 2006;20:386-393.
17. Abdollahi M, Rezaei M, Jafarpour A, Undeland I. Dynamic rheological, microstructural and physicochemical properties of blend fish protein recovered from kilka (Clupeonella cultriventris) and silver carp (Hypophthalmichthys molitrix) by the pH-shift process or washing-based technology. Food Chem. 2017;229:695–709.
18. Benelhadj S, Gharsallaoui A, Degraeve P, Attia H, Ghorbel D. Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate. Food Chem. 2016;194:1056–63.
19. Mir NA, Riar CS, Singh S. Physicochemical, molecular and thermal properties of high-intensity ultrasound (HIUS) treated protein isolates from album (Chenopodium album) seed. Food Hydrocoll. 2019;96:433–441.
20. Sathivel S, Bechtel PJ. Properties of soluble protein powders from Alaska pollock (Theragra chalcogramma). Int J Food Scie Tech. 2006;41(5):520–29.
21. Pires C, Batista I, Fradinho P, Costa S. Utilization of alkaline-recovered proteins from cape hake by-products in the preparation of frankfurter-type fish sausages. J Aquat Food Prod Technol. 2009;18(1–2):170–90.
22. Undeland I, Hall G,Wendin K, Gangby I, Rutgersson A. Preventing lipid oxidation during recovery of functional proteins from herring (Clupea harengus) fillets by an acid solubilization process. J Agric Food Chem. 2005;53(14):5625– 34.
23. Hultin HO, Kelleher SD, Feng Y, Richards MP, Kristinsson H, Undeland I, Ke S. High efficiency protein extraction. 2001;Google Patents.
24. Piornos JA, Burgos-Díaz C, Ogura T, Morales E, Rubilar M, Maureira-Butler I, Salvo-Garrido H. Functional and physicochemical properties of a protein isolate from AluProt-CGNA: A novel protein-rich lupin variety (Lupinus luteus). Food Res Int. 2015;76:719–24.
25. Foh MBK, Wenshui X, Amadou I, Jiang Q. Influence of pH shift on functional properties of protein isolated of Tilapia (Oreochromis niloticus) muscles and of soy protein isolate. Food Bioprocess Tech. 2010;5(6):2192-00.
26. Oliaei N, Mosavinassab M, Ghorbani M, Sadeghi Mahonk AR, Maghsodlo Y. Composition and functional properties of isolated protein from Myctophid (Benthosema pterotum) using pH shift method. 2015;5(10):25-36. [Persian]
27. Ren X, Li C, Yang F, Huang Y, Huang C, Zhang K, Yan L. Comparison of hydrodynamic and ultrasonic cavitation effects on soy protein isolate functionality. J Food Eng. 2020;265:109697.
28. Oboroceanu D, Wang L, Magner E, Auty MAE. Fibrillization of whey proteins improves foaming capacity and foam stability at low protein concentrations. J Food Eng. 2014;121:102–11.
29. Pirestani S, Nasirpour A, Keramat J, Desobry S. Preparation of chemically modified canola protein isolate with gum Arabic by means of Maillard reaction under wet-heating conditions. Carbohydr Polym. 2017;155:201–07.
30. Resendiz-Vazquez JA, Ulloa JA, Urías-Silvas JE, Bautista-Rosales PU, Ramírez- Ramírez JC, Rosas-Ulloa P, González-Torres L. Effect of high-intensity ultrasound on the technofunctional properties and structure of jackfruit (Artocarpus heterophyllus) seed protein isolate. Ultrason Sonochem. 2017;37:436–44.
31. Flores-Jiméneza NT, Ulloaa JA, Urías Silvasb JE, Ramírez Ramírezd JC, Ulloac PR, Rosalesa PUB, et al. Effect of high-intensity ultrasound on the compositional, physicochemical, biochemical, functional and structural properties of canola (Brassica napus). 2019;121:947-56.
32. Kristinsson HG, Liang T. Effect of pH-shift processing and surimi processing on Atlantic croaker (Micropogonias undulates) muscle proteins. J Food Sci. 2006;7:298-06.
33. Kristinsson HG, Theodore AE, Demir N, Ingadottir BA. Comparative study between acid- and alkali-aided processing and surimi processing for the recovery of proteins from channel catfish muscle. J Food Sci. 2005;70:298-06.
34. Zhang Z, Yang Y, Zhou P, Zhang X, Wang J. Effects of high pressure modification on conformation and gelation properties of myofibrillar protein. Food Chem. 2017;217:678–86.
35. Stathopulos PB, Scholz GA, Hwang YM, Rumfeldt JAO, Lepock JR, Meiering EM. Sonication of proteins causes formation of aggregates that resemble amyloid. Protein Sci. 2004;13(11):3017–27.
36. Carbonaro M, Nucara A. Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region. Amino Acids. 2010;38(3):679–690.
37. Chaijan M, Panpipat W, Benjakul S. Physicochemical and gelling properties of short-bodied mackerel (Rastrelliger brachysoma) protein isolate prepared using alkaline-aided process. Food Bioprod Process. 2010;88(2–3):174–80.