تولید و بهینه سازی نانو سامانه های کیتوزان برای حمل فراکسیون پپتیدی حاصل از هیدرولیز آنزیمی ضایعات سر میگوی وانامی (Litopenaeus vannamei)

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه تربیت مدرس
چکیده
در این تحقیق ضایعات سر میگوی وانامی تهیه و بصورت آنزیمی با کمک آنزیم آلکالاز (L 4/2( هیدرولیز و با اولترافیلرهای با اندازه چشمه 10 کیلو دالتون فرکشن بندی شد. فرکشن مورد نظر بر اساس روش ژلاسیون یونی (کیتوزان و تری پلی فسفات) در کپسول های نانوکیتوزان بر اساس غلظت های 1 و 2 میلیگرم بر میلی لیتر کیتوزان، نسبت های مختلف کیتوزان:تری پلی فسفات و غلظت های مختلف فرکشن پپتیدی شامل 1، 5 و 10 میلی گرم در میلی لیتر بهینه سازی شد. درجه هیدرولیز و طول پپتیدهای بدست آمده از هیدرولیز آنزیمی محاسبه شد. اندازه، پتانسیل زتا و متوسط قطر و توزیع اندازه ذرات توسط دستگاه انکسار نور پویا بررسی شدند. ساختار و شکل نانوکپسول ها شامل عکس برداری میکروسکوپ الکترونی روبشی (SEM) و طیف مادون قرمز (FTIR) انجام شد. اندازه ذرات در غلظت ها و تمیار های مختلف متنوع و در محدوده 30 تا 150 نانومتر بود. بهترین نتیجه حاصل از بهینه سازی کپسولیشن در تیمار نسبت 2:1 کیتوزان به پلی فسفات و غلظت 10 میلی گرم بر میلی لیتر بدست آمد. اندازه، شاخص پراکندگی، پتانسیل زتا و اندازه نانوکپسول ها در شرایط بهینه مورد نظر به ترتیب ۰٫۳۷۵،۲۰۲ و 13/30 نانومتر بودند و شرایط نگهداری در دمای 20- درجه سانتیگراد تاثیر چندانی بر کیفیت نانوکپسول ها نداشت. با توجه به کارایی بالا (18/0±04/91 درصد) کیتوزان می تواند برای نانکپسوله کردن فرکشن پپتیدی کوچکتر از 10 کیلودالتون مورد استفاده قرار گیرد.
کلیدواژه‌ها

موضوعات


.1Gildberg A, Bøgwald J, Johansen A, Stenberg E. Isolation of acid peptide fractions from a fish protein hydrolysate with strong stimulatory effect on Atlantic salmon (Salmo salar) head kidney leucocytes. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 1996 May 1; 114(1):97-101.
2. Gildberg A, Stenberg E. A new process for advanced utilisation of shrimp waste. Process Biochemistry. 2001 Mar 1; 36(8-9):809-12.
3. Simpson BK, Nayeri G, Yaylayan V, Ashie IN. Enzymatic hydrolysis of shrimp meat. Food Chemistry. 1998 Jan 1; 61(1-2):131-8.
4. Mizani MA, Aminlari M, Khodabandeh M. An effective method for producing a nutritive protein extract powder from shrimp-head waste. Food science and technology international. 2005 Feb; 11(1):49-54.
5. Kandra P, Challa MM, Kalangi Padma Jyothi H. Efficient use of shrimp waste: Present and future trends. Vol. 93, Applied Microbiology and Biotechnology. 2012. p. 17–29.
6. Shahidi F, Ambigaipalan P. Novel functional food ingredients from marine sources. Vol. 2, Current Opinion in Food Science. 2015. p. 123–9.
7. Chalamaiah M, Hemalatha R, Jyothirmayi T. Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food chemistry. 2012 Dec 15; 135(4):3020-38.
8. De Holanda HD, Netto FM. Recovery of components from shrimp (Xiphopenaeus kroyeri) processing waste by enzymatic hydrolysis. Journal of food science. 2006 Jun; 71(5):C298-303.
9. Hou Y, Wu Z, Dai Z, Wang G, Wu G. Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. Journal of Animal Science and Biotechnology. 2017 Dec; 8(1):1-3.
10. Mohanty DP, Mohapatra S, Misra S, Sahu PS. Milk derived bioactive peptides and their impact on human health–A review. Saudi journal of biological sciences. 2016 Sep 1;23(5):577-83.
11. Erdmann K, Cheung BW, Schröder H. The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. The Journal of nutritional biochemistry. 2008 Oct 1; 19(10):643-54.
12. Adjonu R, Doran G, Torley P, Agboola S. Whey protein peptides as components of nanoemulsions: A review of emulsifying and biological functionalities. Journal of Food Engineering. 2014 Feb 1; 122:15-27.
13. Li-Chan EC. Bioactive peptides and protein hydrolysates: research trends and challenges for application as nutraceuticals and functional food ingredients. Current Opinion in Food Science. 2015 Feb 1; 1:28-37.
14. Vilaça N, Amorim R, Martinho O, Reis RM, Baltazar F, Fonseca AM, Neves IC. Encapsulation of α-cyano-4-hydroxycinnamic acid into a NaY zeolite. Journal of materials science. 2011 Dec; 46(23):7511-6.
15. Jonassen H, Kjøniksen AL, Hiorth M. Stability of chitosan nanoparticles cross-linked with tripolyphosphate. Biomacromolecules. 2012 Nov 12; 13(11):3747-56.
16. Mosquera M, Giménez B, Da Silva IM, Boelter JF, Montero P, Gómez-Guillén MC, et al. Nanoencapsulation of an active peptidic fraction from sea bream scales collagen. Food Chemistry. 2014; 156:144–50.
17. Hosseinnejad M, Jafari SM. Evaluation of different factors affecting antimicrobial properties of chitosan. International journal of biological macromolecules. 2016 Apr 1;85:467-75.
18. Hu Q, Luo Y. Polyphenol-chitosan conjugates: Synthesis, characterization, and applications. Carbohydrate polymers. 2016 Oct 20; 151:624-39.
19. Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine drugs. 2015 Mar; 13(3):1133-74.
20. Pujana MA, Pérez-Álvarez L, Iturbe LC, Katime I. Biodegradable chitosan nanogels crosslinked with genipin. Carbohydrate Polymers. 2013 May 15; 94(2):836-42.
21. Ramimoghadam D, Bagheri S, Abd Hamid SB. Stable monodisperse nanomagnetic colloidal suspensions: an overview. Colloids Surfaces B Biointerfaces. 2015; 133:388411.
22. Rajabi H, Jafari SM, Rajabzadeh G, Sarfarazi M, Sedaghati S. Chitosan-gum Arabic complex nanocarriers for encapsulation of saffron bioactive components. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2019 Oct 5; 578:123644.
23. Akbari-Alavijeh S, Shaddel R, Jafari SM. Nanostructures of chitosan for encapsulation of food ingredients. InBiopolymer nanostructures for food encapsulation purposes 2019 Jan 1 381–418.
24. Katouzian I, Jafari SM. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends in Food Science & Technology. 2016 Jul 1;53:34-48.
25. Bugnicourt L, Ladavière C. Interests of chitosan nanoparticles ionically cross-linked with tripolyphosphate for biomedical applications. Progress in polymer science. 2016 Sep 1; 60:1-7.
26. Bulmer C, Margaritis A, Xenocostas A. Production and characterization of novel chitosan nanoparticles for controlled release of rHu-Erythropoietin. Biochemical engineering journal. 2012 Oct 15; 68:61-9.
27. Detsi A, Kavetsou E, Kostopoulou I, Pitterou I, Pontillo ARN, Tzani A, et al. Nanosystems for the encapsulation of natural products: The case of chitosan biopolymer as a matrix. Pharmaceutics. 2020; 12(7):1–68.
28. Jamil B, Abbasi R, Abbasi S, Imran M, Khan SU, Ihsan A, et al. Encapsulation of cardamom essential oil in chitosan nano-composites: in-vitro efficacy on antibiotic-resistant bacterial pathogens and cytotoxicity studies. Frontiers Microbiology. 2016;7:1580.
29. Rashidian G, Abedian Kenari A, Nikkhah M. Evaluation of antioxidative and antibacterial activities of fractionated hydrolysate from shrimp Litopenaeus vannamei head wastes against aquatic pathogenic bacteria. Aquaculture Research. 2021 Mar 19.
30. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry. 1976 May 7; 72(1-2):248-54.
31. Adler-Nissen J, Olsen HS. The influence of peptide chain length on taste and functional properties of enzymatically modified soy protein. Functionality and Protein Structure; 1979 125-146.
32. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. nature. 1970 Aug; 227(5259):680-5.
33. Wang T, Zhu XK, Xue XT, Wu DY. Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydrate polymers. 2012 Mar 17; 88(1):75-83.
34. Kristinsson HG, Rasco BA. Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. Journal of agricultural and food chemistry. 2000 Mar 20; 48(3):657-66.
35. Akbari-Alavijeh S, Shaddel R, Jafari SM. Encapsulation of food bioactives and nutraceuticals by various chitosan-based nanocarriers. Food hydrocolloids. 2020 Aug 1;105:105774.
36. Katouzian I, Jafari SM. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends in Food Science & Technology. 2016 Jul 1;53:34-48.
37. Othman N, Masarudin MJ, Kuen CY, Dasuan NA, Abdullah LC. Synthesis and optimization of chitosan nanoparticles loaded with L-ascorbic acid and thymoquinone. Nanomaterials. 2018 Nov; 8(11):920.
38. Honary S, Ebrahimi P, Hadianamrei R. Optimization of size and encapsulation efficiency of 5-FU loaded chitosan nanoparticles by response surface methodology. Current drug delivery. 2013 Dec 1; 10(6):742-52.
39. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari MR. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018 Jun; 10(2):57.
40. Kumar A, Dixit CK. Methods for characterization of nanoparticles. In: Advances in nanomedicine for the delivery of therapeutic nucleic acids. Elsevier; 2017. p. 43–58.
41. Chauhan N, Dilbaghi N, Gopal M, Kumar R, Kim KH, Kumar S. Development of chitosan nanocapsules for the controlled release of hexaconazole. International journal of biological macromolecules. 2017 Apr 1;97:616-24.
42. Park JH, Saravanakumar G, Kim K, Kwon IC. Targeted delivery of low molecular drugs using chitosan and its derivatives. Advanced drug delivery reviews. 2010Jan 31;62(1):28-41.
43. Lima HA, Lia FM, Ramdayal S. Preparation and characterization of chitosan-insulin-tripolyphosphate membrane for controlled drug release: Effect of cross linking agent. Journal of Biomaterials and Nanobiotechnology. 2014 Sep 30; 5(04):211.
44. Sacco P, Borgogna M, Travan A, Marsich E, Paoletti S, Asaro F, Grassi M, Donati I. Polysaccharide-based networks from homogeneous chitosan-tripolyphosphate hydrogels: Synthesis and characterization. Biomacromolecules. 2014 Sep 8;15(9):3396-405.
.45 Zhao LM, Shi LE, Zhang ZL, Chen JM, Shi DD, Yang J, Tang ZX. Preparation and application of chitosan nanoparticles and nanofibers. Brazilian Journal of Chemical Engineering. 2011 Sep; 28(3):353-62.