علوم و فنون شیلات

علوم و فنون شیلات

ارزیابی ویژگی های زیست فعالی فراکسیون های پپتیدی حاصل از هیدرولیز آنزیمی ماهی پنجزاری باله نارنجی (Leiognathus bindus)

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه فرآوری محصولات شیلاتی، دانشکده علوم دریایی، دانشگاه تربیت مدرس، نور، ایران.
2 مرکز تحقیقات آزمایشگاهی غذا و دارو، سازمان غذا و دارو، وزارت بهداشت، درمان و آموزش پزشکی، تهران، ایران.
3 گروه بیوشیمی، دانشکده علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران.
4 دانشکده داروسازی، دانشگاه کپنهاگ، کپنهاگ، دانمارک.
چکیده
در این تحقیق، در ابتدا ماهی پنجزاری باله نارنجی (Leiognathus bindus) توسط آنزیم آلکالاز با نسبت آنزیم به سوبسترای 100:1 به مدت 300 دقیقه هیدرولیز و درجه هیدرولیز طی 5 ساعت اندازه‌گیری شد. هم‌چنین نمونه هیدرولیز شده در زمان 240 دقیقه هیدرولیز توسط غشا‌های الترافیلتر با وزن‌های 3، 10 و 30 کیلودالتون جداسازی شد و 4 جزء پپتیدی به‌دست آمد. در ادامه، خاصیت ضد‌اکسیدانی (مهارکنندگی رادیکال‌های آزاد DPPH و ABTS) پروتئین هیدرولیز شده در زمان‌های مختلف هیدرولیز و هم‌چنین فراکسیون­های پپتیدی اندازه‌گیری شد. درجه هیدرولیز در زمان 240 دقیقه پس از هیدرولیز بالاترین میزان را به خود اختصاص داد (11/2± 43/55%). پروتئین هیدرولیز شده ماهی دارای مقدار بالایی از اسیدهای آمینه آب‌گریز بود (6/50%) که عامل ایجاد خاصیت ضداکسیدانی می‌باشند. نتایج مهار رادیکال DPPH نیز نشان داد که بالاترین میزان مهار‌کنندگی در زمان 240 دقیقه هیدرولیز مشاهده شد (46/1± 59/75%). هم‌چنین، جزء پپتیدی با وزن مولکولی 10-3 کیلودالتون دارای خاصیت مهارکنندگی بالاتری نسبت به سایر فراکسیون­ها بود (96/2± 58/80% در غلظت 5 میلی‌گرم بر میلی‌لیتر). بر اساس میزان مهار رادیکال آزاد ABTS، بالاترین میزان مهار‌کنندگی در زمان 240 دقیقه هیدرولیز با میزان 63/0± 54/50% گزارش شد. هم‌چنین در بین همه اجزای پپتیدی، جزء پپتیدی با وزن مولکولی 10-3 کیلودالتون به طور معنی‌داری دارای قدرت مهارکنندگی بالاتری نسبت به سایر اجزای پپتیدی بود (درصد مهار‌کنندگی 44/0± 58/84% در غلظت 5 میلی‌گرم بر میلی‌لیتر). نتایج این بررسی نشان داد که پپتیدهای حاصل از هیدرولیز آنزیمی ماهی پنجزاری باله نارنجی می­تواند به عنوان یک ضداکسیدان طبیعی در فرمولاسیون غذاداروها مورد استفاده واقع گردد.
کلیدواژه‌ها

موضوعات


1- Souyoul SA, Saussy KP, Lupo MP. Nutraceuticals: a review. Dermatology and Therapy. 2018 Mar; 8(1): 5-16.
2- Kotha RR, Luthria DL. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules. 2019 Jan; 24(16): 2930.
3- Manzoor M, Singh J, Bandral JD, Gani A, Shams R. Food hydrocolloids: Functional, nutraceutical and novel applications for delivery of bioactive compounds. International Journal of Biological Macromolecules. 2020 Dec 15; 165: 554-67.
4- Joshi R, Garud N, Akram W. Marine Nutraceuticals. In Marine Niche: Applications in Pharmaceutical Sciences 2020 (pp. 53-69). Springer, Singapore.
5- Šimat V, Elabed N, Kulawik P, Ceylan Z, Jamroz E, Yazgan H, Čagalj M, Regenstein JM, Özogul F. Recent advances in marine-based nutraceuticals and their health benefits. Marine drugs. 2020 Dec; 18(12): 627.
6- Wang X, Yu H, Xing R, Li P. Characterization, preparation, and purification of marine bioactive peptides. BioMed research international. 2017 Jul 6;2017.
7- Pezeshk S, Ojagh SM, Rezaei M, Shabanpour B. Fractionation of protein hydrolysates of fish waste using membrane ultrafiltration: investigation of antibacterial and antioxidant activities. Probiotics and antimicrobial proteins. 2019 Sep; 11(3): 1015-22.
8- Ramezanzadeh L, Nikkhah M. Enzymatic hydrolysis of rainbow trout (Oncorhynchus mykiss) skin gelatin and evaluation of its antioxidant properties. Fisheries Science and Technology. 2016 Sep 10; 5(2): 29-44.
9- Najafian L, Babji AS. Fractionation and identification of novel antioxidant peptides from fermented fish (pekasam). Journal of Food Measurement and Characterization. 2018 Sep; 12(3): 2174-83.
10- Deyrestani A, Alavi-Yeganeh MS, Sadeghizadeh M. Length–weight and length–length relationships of six ponyfish species from the Persian gulf. Croatian Journal of Fisheries: Ribarstvo. 2015 May 14; 73(2): 67-9.
11- Ibrahim A, Hussein C, Alshawy F, Alcheikh Ahmad A. First Record of Pope's ponyfish Equulites popei (Whitley, 1932),(Osteichthyes: Leiognathidae) in the Syrian Marine Waters (Eastern Mediterranean). Journal of Wildlife and Biodiversity. 2020 Nov 1; 4(Special issue):1-5.
12- Ramezani Z, Rajabzadeh Ghatarmi E, Hosseini SF, Regenstein JM. Functional properties and antioxidant activities of protein hydrolysates from orangefin ponyfish (Photopectoralis bindus). Iranian Journal of Fisheries Sciences. 2020 Nov 10; 19(6): 3001-17.
13- Ramezani Z, Rajabzadeh Ghatarmi E, Hosseini SF. Effect of hydrolysis intensity on the functional properties of protein hydrolysed of orangefin ponyfish (Leiognathus bindus). Journal of Food Processing and Preservation. 2018 Dec 22; 10 (2): 137-49.
14- Venkatesan J, Anil S, Kim SK, Shim MS. Marine fish proteins and peptides for cosmeceuticals: A review. Marine drugs. 2017 May; 15(5): 143.
15- Arumugam V, Venkatesan M, Ramachandran S, Sundaresan U. Bioactive peptides from marine ascidians and future drug development–a review. International Journal of Peptide Research and Therapeutics. 2018 Mar; 24(1): 13-8.
16- Ramezanzade L, Hosseini SF, Nikkhah M. Biopolymer-coated nanoliposomes as carriers of rainbow trout skin-derived antioxidant peptides. Food Chemistry. 2017 Nov 1; 234: 220-9.
17- Arumugam V, Venkatesan M, Ramachandran S, Sundaresan U. Bioactive peptides from marine ascidians and future drug development–a review. International Journal of Peptide Research and Therapeutics. 2018 Mar; 24(1): 13-8.
18- Yarnpakdee S, Benjakul S, Kristinsson HG, Kishimura H. Antioxidant and sensory properties of protein hydrolysate derived from Nile tilapia (Oreochromis niloticus) by one-and two-step hydrolysis. Journal of Food Science and Technology. 2015 Jun; 52(6): 3336-49.
19- Bordbar S, Ebrahimpour A, Zarei M, Abdul Hamid A, Saari N. Alcalase-generated proteolysates of stone fish (Actinopyga lecanora) flesh as a new source of antioxidant peptides. International Journal of Food Properties. 2018 Jan 1; 21(1): 1541-59.
20- Vázquez JA, Rodríguez-Amado I, Sotelo CG, Sanz N, Pérez-Martín RI, Valcárcel J. Production, characterization, and bioactivity of fish protein hydrolysates from aquaculture turbot (Scophthalmus maximus) wastes. Biomolecules. 2020 Feb; 10(2): 310.
21- Ramezanzade L, Hosseini SF, Nikkhah M, Arab-Tehrany E. Recovery of bioactive peptide fractions from rainbow trout (Oncorhynchus mykiss) processing waste hydrolysate. Ecopersia. 2018 Apr 10; 6(1): 31-40.
22- AOAC. (2002). Official method of analysis. (17thed). Washington, DC: Association of Official Analytical Chemists.
23- Hosseini SF, Soleimani MR, Nikkhah M. Chitosan/sodium tripolyphosphate nanoparticles as efficient vehicles for antioxidant peptidic fraction from common kilka. International journal of biological macromolecules. 2018 May 1; 111: 730-7.
24- Lowry O, Rosebrough N, Farr AL, Randall R. Protein measurement with the Folin phenol reagent. Journal of biological chemistry. 1951 Nov 1; 193(1): 265-75.
25- Antoine FR, Wei CI, Littell RC, Marshall MR. HPLC method for analysis of free amino acids in fish using o-phthaldialdehyde precolumn derivatization. Journal of Agricultural and Food Chemistry. 1999 Dec 20; 47(12): 5100-7.
26- You L, Zhao M, Regenstein JM, Ren J. Changes in the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates during a simulated gastrointestinal digestion. Food Chemistry. 2010 Jun 1; 120(3): 810-6.
27- Alemán A, Pérez-Santín E, Bordenave-Juchereau S, Arnaudin I, Gómez-Guillén MC, Montero P. Squid gelatin hydrolysates with antihypertensive, anticancer and antioxidant activity. Food Research International. 2011 May 1; 44(4): 1044-51.
28- Temelli F. Perspectives on the use of supercritical particle formation technologies for food ingredients. The Journal of Supercritical Fluids. 2018 Apr 1; 134: 244-51.
29- Kim SR, Byun HG. The novel angiotensin I converting enzyme inhibitory peptide from rainbow trout muscle hydrolysate. Fisheries and Aquatic Sciences. 2012; 15(3): 183-90.
30- Lapeña D, Vuoristo KS, Kosa G, Horn SJ, Eijsink VG. Comparative assessment of enzymatic hydrolysis for valorization of different protein-rich industrial byproducts. Journal of agricultural and food chemistry. 2018 Aug 24; 66(37): 9738-49.
31- Raftani Amiri Z, Safari R, Bakhshandeh T. Functional properties of fish protein hydrolysates from Cuttlefish (Sepia pharaonis) muscle produced by two commercial enzymes.
32- Roslan J, Yunos KF, Abdullah N, Kamal SM. Characterization of fish protein hydrolysate from tilapia (Oreochromis niloticus) by-product. Agriculture and Agricultural Science Procedia. 2014 Jan 1; 2: 312-9.
33- Sheriff SA, Sundaram B, Ramamoorthy B, Ponnusamy P. Synthesis and in vitro antioxidant functions of protein hydrolysate from backbones of Rastrelliger kanagurta by proteolytic enzymes. Saudi Journal of Biological Sciences. 2014 Jan 1; 21(1): 19-26.
34- Ktari N, Fakhfakh N, Balti R, Ben Khaled H, Nasri M, Bougatef A. Effect of degree of hydrolysis and protease type on the antioxidant activity of protein hydrolysates from cuttlefish (Sepia officinalis) by-products. Journal of Aquatic Food Product Technology. 2013 Sep 3; 22(5): 436-48.
35- Nasri R, Younes I, Jridi M, Trigui M, Bougatef A, Nedjar-Arroume N, Dhulster P, Nasri M, Karra-Châabouni M. ACE inhibitory and antioxidative activities of Goby (Zosterissessor ophiocephalus) fish protein hydrolysates: effect on meat lipid oxidation. Food Research International. 2013 Nov 1; 54(1): 552-61.
36- García-Moreno PJ, Batista I, Pires C, Bandarra NM, Espejo-Carpio FJ, Guadix A, Guadix EM. Antioxidant activity of protein hydrolysates obtained from discarded Mediterranean fish species. Food Research International. 2014 Nov 1; 65: 469-76.
37- Noman A, Qixing J, Xu Y, Ali AH, Al-Bukhaiti WQ, Abed SM, Xia W. Influence of degree of hydrolysis on chemical composition, functional properties, and antioxidant activities of chinese sturgeon (Acipenser sinensis) hydrolysates obtained by using alcalase 2.4 L. Journal of Aquatic Food Product Technology. 2019 Jul 3; 28(6): 583-97.
38- Camargo TR, Khelissa S, Chihib NE, Dumas E, Wang J, Valenti WC, Gharsallaoui A. Preparation and Characterization of Microcapsules Containing Antioxidant Fish Protein Hydrolysates: a New Use of Bycatch in Brazil. Marine Biotechnology. 2021 Apr; 23(2): 321-30.
39- Pagán J, Ibarz A, Falguera V, Benítez R. Enzymatic hydrolysis kinetics and nitrogen recovery in the protein hydrolysate production from pig bones. Journal of Food Engineering. 2013 Dec 1; 119(3): 655-9.
40- Ko JY, Lee JH, Samarakoon K, Kim JS, Jeon YJ. Purification and determination of two novel antioxidant peptides from flounder fish (Paralichthys olivaceus) using digestive proteases. Food and Chemical Toxicology. 2013 Feb 1; 52: 113-20.
41- Bao ZJ, Zhao Y, Wang XY, Chi YJ. Effects of degree of hydrolysis (DH) on the functional properties of egg yolk hydrolysate with alcalase. Journal of food science and technology. 2017 Mar; 54(3): 669-78.
42- Alavi F, Jamshidian M, Rezaei K. Applying native proteases from melon to hydrolyze kilka fish proteins (Clupeonella cultriventris caspia) compared to commercial enzyme Alcalase. Food chemistry. 2019 Mar 30; 277: 314-22.
43- Jang HL, Liceaga AM, Yoon KY. Purification, characterisation and stability of an antioxidant peptide derived from sandfish (Arctoscopus japonicus) protein hydrolysates. Journal of Functional Foods. 2016 Jan 1; 20: 433-42.
44- Zhang Y, Duan X, Zhuang Y. Purification and characterization of novel antioxidant peptides from enzymatic hydrolysates of tilapia (Oreochromis niloticus) skin gelatin. Peptides. 2012 Nov 1; 38(1): 13-21.
45- Tejpal CS, Vijayagopal P, Elavarasan K, Linga Prabu D, Lekshmi RG, Asha KK, Anandan R, Chatterjee NS, Mathew S. Antioxidant, functional properties and amino acid composition of pepsin-derived protein hydrolysates from whole tilapia waste as influenced by pre-processing ice storage. Journal of Food Science and Technology. 2017 Dec; 54(13): 4257-67.
46- Ngo DH, Kang KH, Ryu B, Vo TS, Jung WK, Byun HG, Kim SK. Angiotensin-I converting enzyme inhibitory peptides from antihypertensive skate (Okamejei kenojei) skin gelatin hydrolysate in spontaneously hypertensive rats. Food Chemistry. 2015 May 1; 174: 37-43.
47- Paiva L, Lima E, Neto AI, Baptista J. Angiotensin I-converting enzyme (ACE) inhibitory activity, antioxidant properties, phenolic content and amino acid profiles of Fucus spiralis L. protein hydrolysate fractions. Marine drugs. 2017 Oct; 15(10): 311.
48- Dhanabalan V, Xavier M, Kannuchamy N, Asha KK, Singh CB, Balange A. Effect of processing conditions on degree of hydrolysis, ACE inhibition, and antioxidant activities of protein hydrolysate from Acetes indicus. Environmental Science and Pollution Research. 2017 Sep; 24(26): 21222-32.
49- Girgih AT, He R, Hasan FM, Udenigwe CC, Gill TA, Aluko RE. Evaluation of the in vitro antioxidant properties of a cod (Gadus morhua) protein hydrolysate and peptide fractions. Food chemistry. 2015 Apr 15; 173: 652-9.
50- Rathore MS, Gupta VB. Functional characterization of amino acid transport system for transport of phenylalanine on mammalian cornea for better ocular drug delivery. J. Pharm. Sci. Res. 2010 Jun 1; 2: 329-37.
51- Jiang H, Tong T, Sun J, Xu Y, Zhao Z, Liao D. Purification and characterization of antioxidative peptides from round scad (Decapterus maruadsi) muscle protein hydrolysate. Food Chemistry. 2014 Jul 1; 154: 158-63.
52- Khantaphant S, Benjakul S. Comparative study on the proteases from fish pyloric caeca and the use for production of gelatin hydrolysate with antioxidative activity. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 2008 Dec 1; 151(4): 410-9.
53- Wang B, Li L, Chi CF, Ma JH, Luo HY, Xu YF. Purification and characterisation of a novel antioxidant peptide derived from blue mussel (Mytilus edulis) protein hydrolysate. Food Chemistry. 2013 Jun 1; 138(2-3): 1713-9.
54- Jang HL, Shin SR, Yoon KY. Hydrolysis conditions for antioxidant peptides derived from enzymatic hydrolysates of sandfish (Arctoscopus japonicus). Food Science and Biotechnology. 2017 Oct; 26(5): 1191-7.
55- Zhong S, Ma C, Lin YC, Luo Y. Antioxidant properties of peptide fractions from silver carp (Hypophthalmichthys molitrix) processing by-product protein hydrolysates evaluated by electron spin resonance spectrometry. Food chemistry. 2011 Jun 15; 126(4): 1636-42.
56- Guillén G, López Caballero ME, Alemán A, Lacey AL, Giménez B, Montero García P. Antioxidant and antimicrobial peptide fractions from squid and tuna skin gelatin.
57- Bashir KM, Sohn JH, Kim JS, Choi JS. Identification and characterization of novel antioxidant peptides from mackerel (Scomber japonicus) muscle protein hydrolysates. Food Chemistry. 2020 Sep 1; 323: 126809.
58- Klomklao S, Benjakul S. Protein hydrolysates prepared from the viscera of skipjack tuna (Katsuwonus pelmamis): antioxidative activity and functional properties. Turkish Journal of Fisheries and Aquatic Sciences. 2018 Jan 1; 18(1): 69-79.
59- Senphan T, Benjakul S. Antioxidative activities of hydrolysates from seabass skin prepared using protease from hepatopancreas of Pacific white shrimp. Journal of Functional Foods. 2014 Jan 1; 6: 147-56.
60- Shahi Z, Sayyed-Alangi SZ, Najafian L. Effects of enzyme type and process time on hydrolysis degree, electrophoresis bands and antioxidant properties of hydrolyzed proteins derived from defatted Bunium persicum Bioss. press cake. Heliyon. 2020 Feb 1; 6(2): e03365.
61- Chel-Guerrero L, Cua-Aguayo D, Betancur-Ancona D, Chuc-Koyoc A, Aranda-González I, Gallegos-Tintoré S. Antioxidant and chelating activities from Lion fish (Pterois volitans L.) muscle protein hydrolysates produced by in vitro digestion using pepsin and pancreatin. Emirates Journal of Food and Agriculture. 2020 Jan 23: 62-72.
62- Gao R, Shu W, Shen Y, Sun Q, Jin W, Li D, Li Y, Yuan L. Peptide fraction from Sturgeon muscle by pepsin hydrolysis exerts anti-inflammatory effects in LPS-stimulated RAW264. 7 macrophages via MAPK and NF-κB pathways. Food Science and Human Wellness. 2021 Jan 1; 10(1): 103-11.
63- Yan QJ, Huang LH, Sun Q, Jiang ZQ, Wu X. Isolation, identification and synthesis of four novel antioxidant peptides from rice residue protein hydrolyzed by multiple proteases. Food Chemistry. 2015 Jul 15; 179: 290-5.