علوم و فنون شیلات

علوم و فنون شیلات

کارایی نانوزئولیت بر کیفیت آب، عملکرد رشد و تغذیه، آنزیم‌های گوارشی و ایمنی بچه ماهیان کپور (Cyprinus carpio) در سیستم بایوفلاک

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه شیلاتی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گلستان، ایران
2 استادیار شیلات، گروه شیلاتی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گلستان، ایران
3 گروه شیلات، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گلستان، ایران
چکیده
فناوری بایوفلاک به­عنوان یک سیستم پرورش برای کاهش اثرات زیست محیطی تولید ماهی در نظر گرفته می­شود. در مطالعه حاضر تاثیر نانوذرات زئولیت بر کیفیت آب، عملکرد رشد، آنزیم­های گوارشی و پاسخ ایمنی ماهی کپور معمولی (Cyprinus carpio) پرورش یافته در شرایط بایوفلاک مورد بررسی قرار گرفت. بچه ماهیان (وزن اولیه 36/0± 99/7 گرم) در 4 تیمار تقسیم شدند و با 4 سطح از نانوذره زئولیت به­میزان 0 (شاهد)، 50، 100 و 200 میلی­گرم در کیلوگرم جیره غذایی در سیستم بایوفلاک (NZ1، NZ2 و NZ3) به­مدت 60 روز تغذیه شدند. نسبت کربن به ازت (1:15) با استفاده از ساکارز تامین گردید. پارامترهای کیفیت آب مانند ترکیبات نیتروژنی در طول دوره آزمایش اندازه­گیری شد. پایان دوره آزمایش، بالاترین شاخص­های رشد و کمترین ضریب تبدیل غذایی در جیره 50 میلی گرم در کیلوگرم (NZ1) به دست آمد. فعالیت پروتئاز روده در تیمارهای NZ1 و NZ2 به­طور معنی ­داری بیشتر از سایر تیمارها بود، و بیشترین فعالیت لیپاز و آمیلاز مربوط به تیمار NZ1 بود. جیره­های 50 و 100 نانوزئولیت در شرایط بایوفلاک به­طور قابل توجهی فعالیت سیستم ایمنی ماهی را افزایش دادند. مطالعه حاضر نشان می­دهد که مکمل غذایی با 50 و 100 میلی­گرم نانوذرات زئولیت در سیستم بایوفلاک به­طور قابل توجهی باعث افزایش عملکرد رشد، آنزیم­های گوارشی و پاسخ ایمنی در ماهی کپور معمولی در مخازن پرورش ماهی می ­شود.
کلیدواژه‌ها

موضوعات


1. Crab R, Chielens B, Wille M, Bossier P, Verstraete W. The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquaculture Research. 2010; 41(4): 559-567.
2. De Schryver P, Crab R, Defoirdt T, Boon N, Verstraete W. The basics of bioflocs technology: the added value for aquaculture. Aquaculture. 2008; 277: 125-137.
3. Azim ME, Little DC. The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture. 2008; 283(1-4): 29-35.
4. Avnimelech Y.. Biofloc technology. A practical guide book. The World Aquaculture Society, Baton Rouge. 2009; 182.
5. McIntosh D, Samocha TM, Jones ER, Lawrence AL, McKee DA, Horowitz S, Horowitz A. The effect of a bacterial supplement on the high-density culturing of Litopenaeus vannamei with low-protein diet in outdoor tank system and no water exchange. Aquacultural Engineering. 2000; 21:215–227.
6. Adineh H, Naderi M, Hamidi MK, Harsij M. Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density. Fish and shellfish immunology. 2019; 95: 440-448.
7. Miller G, Senjen R. Nanotechnology used for food packaging and food contact materials. Nanotechnology in food and Agriculture. 2008; 2: 14-68.
8. Papaioannou D, Katsoulos PD, Panousis N, Karatzias H. The role of natural and synthetic zeolites as feed additives on the prevention and/or the treatment of certain farm animal diseases: A review. Microporous and mesoporous materials. 2005; 84(1-3); 161-170.
9. Papaioannou DS, Kyriakis SC, Papasteriadis A, Roumbies N, Yannakopoulos A, Alexopoulos C. Effect of in-feed inclusion of a natural zeolite (clinoptilolite) on certain vitamin, macro and trace element concentrations in the blood, liver and kidney tissues of sows. Research in veterinary science. 2002; 72(1): 61-68.
10. Auerbach SM, Carrado KA, Dutta PK. Handbook of zeolite science and technology, CRC press. 2003.
11. Adineh H, Jafaryan H, Khademi Hamidi M, Karimtabar FZ, Sedaghat Z. The effects of reducing the feeding rates on growth and feed performance, blood biochemical parameters, and water quality in bio-floc common carp (Cyprinus carpio) culture and clean systems. Journal of Fisheries. 2021; 74(3): 453-466.
12. Mahmoudi Khoshdarehgi M. Haji Moradloo A, Dastar B. Determining the appropriate level of protein in diet of Cyprinus carpio fry based on some parameters of growth, blood and serum biochemistry in biofloc system. Journal of Applied Ichthyological Research. 2019; 7(1): 61-84.
13. Khademi Hamidi M, Adineh H, Harsij M, Gholipour Kanani H. Effects of adding molasses in water and diet of common carp on growth, blood biochemical indices, digestive enzymes and water quality in a biofloc system. Aquatic Animals Nutrition. 2019; 5(1): 25-34.
14. Karimtabar FZ, Jafaryan H, Adineh H. The effect of commercial probiotics addition in biofloc system: Water quality, feed and growth performance and body composition of Common carp (Cyprinus carpio). Aquaculture Sciences. 2020; 141-151.
15. Van Doan H. Lumsangkul C, Hoseinifar SH, Harikrishnan R, Balasundaram C, Jaturasitha S. Effects of coffee silverskin on growth performance, immune response, and disease resistance of Nile tilapia culture under biofloc system. Aquaculture. 2021; 736995.
16. Van Doan H, Hoseinifar SH, Naraballobh W, Jaturasitha S, Tongsiri S, Chitmanat C, Ringø E. Dietary inclusion of Orange peels derived pectin and Lactobacillus plantarum for Nile tilapia (Oreochromis niloticus) cultured under indoor biofloc systems. Aquaculture. 2019; 508: 98-105.
17. Dinda R, Mandal A, Das SK. Neem (Azadirachta indica A. Juss) supplemented biofloc medium as alternative feed in common carp (Cyprinus carpio var. communis Linnaeus) culture. Journal of Applied Aquaculture. 2020; 32(4): 361-379.
18. Alishiri Joonaghani M, Mirvaghefi A, Rezaei Tavabe K. Using the Polyethylenimine Polymer (PEI) -Coated Zeolite (Clinoptilolite) to control Yersinia ruckeri in fish tank. Journal of Fisheries. 2020; 73(3): 395-406.
19. Baratizadeh S, Peyghan R, Razijalali M. Combined effect of filtration method (carbon, zeolite and simple filtration) and stock density of Macro (Labidochromis caeruleus) on growth and nitrogenous compounds of water. Iranian Veterinary Journal. 2017; 13(3): 15-23.
20. Faridi Kalourazi M, Falahatkar B, Alinezhad S, Davoodi D. Effects of Zeolite Nano-Structure on Experimental Chronic Toxicity of Aflatoxin B1 in the Diet of Rainbow Trout (Oncorhynchus mkiss) and Evaluation of Growth and Physiological Indices. Journal of Fisheries. 2016; 69(1): 101-114.
21. Mohammadnejad Shamushki M, Mir Aghazadeh S. The Effect of Zeolite on Growth Factors and Survival of Cyprinus carpio (Cyprinus carpio). Journal of Animal Biology. 2011; 4(1): 69-74.
22. Hassaan MS, Nssar KM, Mohammady EY, Amin A, Tayel SI, El-Haroun ER. Nano-zeolite efficiency to mitigate the aflatoxin B1 (AFB1) toxicity: Effects on growth, digestive enzymes, antioxidant, DNA damage and bioaccumulation of AFB1 residues in Nile tilapia (Oreochromis niloticus). Aquaculture. 2020; 523: 735123.
23. Zahran E, Risha E, Hamed M, Ibrahim T, Palić D.. Dietary mycotoxicosis prevention with modified zeolite (Clinoptilolite) feed additive in Nile tilapia (Oreochromis niloticus). Aquaculture. 2020; 515: 734562.
24. Abbas WT, Ali SE, Melegy AA, Gamil AA. Fish diet supplemented with Yemeni Zeolite improves growth performance and reduces lead toxicity in Nile tilapia (Oreochromis niloticus). Aquaculture Research. 2021; 52(12), 6678-6688.
25. Hong KB, Jani M, Zain RAMM, Fauzi NM. Effect of stocking density on the growth performance of red tilapia in zeolite supplemented closed system. Jurnal Teknologi. 2021; 83(5): 85-92.
26. M Shalaby A, K Khames M, Fathy A, A Gharieb A, A Abdel-Hamid E. The Impact of Zeolite on Ammonia Toxicity, Growth Performance and Physiological Status of the Nile Tilapia (Oreochromius niloticus). Egyptian Journal of Aquatic Biology and Fisheries. 2021; 25(1): 643-663.
27. Najdegerami EH, Bakhshi F, Lakani FB. Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero-water exchange system. Fish Physiology and Biochemistry. 2016; 42(2): 457-465.
28. Xu WJ, Pan LQ. Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input. Aquaculture. 2013; 412: 117-124.
29. American Public Health Association (APHA). In: Clescert, L., Greenberg, A., Eaton, A. (Eds.), Standard Methods for the Examination of Water and Wastewater. 20th edition. Washington, USA. 1998.
30. Cahu CL, Zambonino-Infante JL, Quazuguel P, Le Gall MM. Protein hydrolysate vs. fish meal in compound diets for 10-day old sea bass Dicentrarchus labrax larvae. Aquaculture. 1999; 171:109- 119.
31. Rungruangsak‐Torrissen K, Rustad A, Sunde J, Eiane SA, Jensen HB, Opstvedt J, Nygard E, Samuelsen TA, Mundheim H, Luzzana U. In vitro digestibility based on fish crude enzyme extract for prediction of feed quality in growth trials. Journal of the Science of Food and Agriculture. 2002; 82: 644-654.
32. Worthington CC. Worthington Enzyme Manual. Enzymes and related Biochemicals Worthington Chemical. New Jersey. USA. 730 P. 1993.
33. Iijima N, Tanaka S, Ota Y. Purfication and characterization of bile salt activated Lipase from the hepatopancreas of red sea bream (Pagrus major). Journal of Fish Physiology and Biochemistry. 1998; 18: 59-69.
34. Ellis A.E. Lysozyme assays. In: Stolen JS, Fletcher TC, Anderson DP, Robertson BS, Van Muiswinkel. publication. pp. 101-103.W.B. (eds.). Techniques in Fish Immunology. Fair Haven, NJ, USA: SOS. 1990.
35. Sunyer JO, Tort L. Natural hemolytic and bactericidal activities of sea bream Sparus aurata serum are affected by the alternative complement pathway. Veterinary Immunology and Immunopathology. 1995; 45: 333-345.
36. Avnimelech Y. Feeding with microbial flocs by tilapia in minimal discharge bioflocs technology ponds. Aquaculture. 2007; 264: 140–147.
37. Kuhn DD, Boardman GD, Lawrence AL, Marsh L, Flick Jr, GJ. Microbial floc meal as a replacement ingredient for fish meal and soybean protein in shrimp feed. Aquaculture. 2009; 296: 51–57.
38. Hargreaves JA. Biofloc production systems for aquaculture (Vol. 4503, pp. 1-11). Stoneville, MS: Southern Regional Aquaculture Center. 2013.
39. Schneider O, Sereti V, Eding EH, Verreth JAJ. Analysis of nutrient flows in integrated intensive aquaculture systems. Aquaculture Engineering. 2005; 32: 379-401.
40. Li M, Zhu X, Zhu F, Ren G, Cao G, Song L. Application of modified zeolite for ammonium removal from drinking water. Desalination. 2011; 271(1-3): 295-300.
41. Yıldırım Ö, Türker A, Şenel B. Effects of natural zeolite (clinoptilolite) levels in fish diet on water quality, growth performance and nutrient utilization of tilapia (Tilapia zillii) fry. Fresenius Environmental Bulletin.2009; 18(9): 1567-1571.
42. Luo G, Wang C, Liu W, Sun D, Li L, Tan H. Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture. 2014; 422–423: 1–7.
43. Adineh H, Harsij M. Effect of different levels of biofloc on water quality, growth performance and survival of Litopenaeus vannamei post larvae. Journal of Veterinary Research. 2018; 73(4): 393-401.
44. Panjaitan P. Field and laboratory study of Penaeus monodon culture with zero water exchange and limited water exchange model using molasses as a carbon source. Ph.D. Thesis, Charles Darwin Univ.,Darwin, NT, Australia. 2004.
45. Liu G, Ye Z, Liu D, Zhao J, Sivaramasamy E, Deng Y, Zhu S. Influence of stocking density on growth, digestive enzyme activities, immune responses, antioxidant of Oreochromis niloticus fingerlings in biofloc systems. Fish & shellfish immunology. 2018; 81: 416-422.
46. Bakhshi F, Najdegerami EH, Manaffar R, Tukmechi A, Farah KR. Use of different carbon sources for the biofloc system during the grow-out culture of common carp (Cyprinus carpio L.) fingerlings. Aquaculture. 2018; 484: 259-267.
47. Minabi K, Sourinejad I, Alizadeh M, Ghatrami ER, Khanjani MH. Effects of different carbon to nitrogen ratios in the biofloc system on water quality, growth, and body composition of common carp (Cyprinus carpio L.) fingerlings. Aquaculture International. 2020; 28(5): 1883-1898.
48. Abiri SA, Chitsaz H, Najdegerami EH, Akrami R, Jalali AS. Influence of wheat and rice bran fermentation on water quality, growth performance, and health status of Common carp (Cyprinus carpio L.) juveniles in a biofloc-based system. Aquaculture. 2022; 555: 738168.
49. Faridi Kalourazi M, Falahatkar B, Alinezhad S, Davoodi D. Effects of Zeolite Nano-Structure on Experimental Chronic Toxicity of Aflatoxin B1 in the Diet of Rainbow Trout (Oncorhynchus mkiss) and Evaluation of Growth and Physiological Indices. Journal of Fisheries. 2016; 69(1): 101-114.
50. Mohammadi M, Shamsai Mehrjan M, Abbasi Ghadiklaie H, Afsar A, Soltani A, Rezaei D. The effect of oral administration of nano zeolite on growth and survival indices of rainbow trout (Oncorhynchus mykiss). Journal of Aquaculture Development. 2014; 8(2): 55-65.
51. Kanyılmaz M, Tekelioğlu N, Sevgili H, Uysal R, Aksoy A. Effects of dietary zeolite (clinoptilolite) levels on growth performance, feed utilization and waste excretions by gilthead sea bream juveniles (Sparus aurata). Animal Feed Science and Technology. 2015; 200: 66-75.
52. Ju ZY, Forster I, Conquest L, Dominy W. Enhanced growth effects on shrimp (Litopenaeus vannamei) from inclusion of whole shrimp floc or floc fractions to a formulated diet. Aquaculture Nutrition. 2008; 14(6): 533-543.
53. Zhao ZG, Xu QY, Luo L, Yin JS, Wang CA. Effect of adding carbon source on growth of fish and water quality in Songpu mirror carp (Cyprinus specularis Songpu) pond. Journal of Northeast Agricultural University. 2013; 44: 105-112.
54. Ballarin L, Dall'Oro M, Bertotto D, Libertini A, Francescon A, Barbaro A. Haematological parameters in Umbrina cirrosa (Teleostei, Sciaenidae): a comparison between diploid and triploid specimens. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2004; 138(1): 45-51.
55. Jawahar S, Nafar A, Vasanth K, Musthafa MS, Arockiaraj J, Balasundaram C, Harikrishnan R. Dietary supplementation of Zeolite on growth performance, immunological role, and disease resistance in Channa striatus against Aphanomyces invadans. Fish & Shellfish Immunology. 2016; 51: 161-169.
56. Jaleel MA, Musthafa MS, Ali AJ, Mohamed MJ, Kumar MA, Natarajan V, Thiagarajan G. Studies on the growth performance and immune response of koi carp fingerlings (Cyprinus carpio koi) fed with azomite supplemented diet. Journal of Biology and Nature. 2015; 4(3): 160-169.