علوم و فنون شیلات

علوم و فنون شیلات

تولید آستاگزانتین و بیان ژنهای مسیر متابولیکی آن، تحت تاثیر اسید لینولئیک و نانوذرات در ریزجلبک هماتوکوکوس لاکوستریس Haematococcus lacustris

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه بیوتکنولوژی و اصلاح نباتات، دانشگاه زابل، ایران
2 گروه مهندسی علوم زیستی، دانشکده علوم و فنون نوین، دانشگاه تهران، ایران
چکیده
آستاگزانتین ماده ای بسیار ارزشمند و دارای فواید بسیاری برای انسان است، این ماده از بعضی موجودات مانند ریزجلبک Haematococcus lacustris استخراج می‌شود. محققان سعی در تولید حداکثری این ماده دارند. در این تحقیق اثرغلظت‌های مختلف اسید لینولئیک (LA) و نانوذرات دی‌اکسید تیتانیوم (CRTO) و دی‌اکسید سیلیکون بر تولید آستاگزانتین و بیان دو ژن مسیر متابولیکی آن، بتا کاروتن کتولاز و بتا کاروتن هیدروکسیلاز (CRTR) سنجیده شد. ریزجلبک مورد نظر در محیط کشت BBM (Bold Basal Medium) بمدت 19 روز بصورت اتوتروف کشت داده شد. در روز سوم تیمارها به کشت‌ها اضافه شدند و در سه روز مختلف در مراحل رشد لگاریتمی و ثابت آستاگزانتین اندازه‌گیری شد، همچنین در روز یازدهم استخراج RNA و Real- time PCR صورت گرفت و بیان ژن مشخص گردید. تیمارهای 30 میلی‌مولار اسید لینولئیک و نانوذرات تیتانیوم دی‌اکسید 40 میلی‌گرم برلیتر به ترتیب با 4/3 و 5/1 برابر نسبت به کنترل بیشترین تولید آستاگزانتین و همچنین ژنهای بتا کاروتن کتولاز و بتا کاروتن هیدروکسیلاز به ترتیب تحت تاثیر تیمارهای 30 میلی مولار اسید لینولئیک وسیلیکون دی‌اکسید 40 میلی‌گرم برلیتر بیشترین بیان ژنی را نشان دادند. برای اولین بارنشان داده شدکه غلظت‌های خاصی از لینولئیک اسید و نانوذرات تیتانیوم دی‌اکسید به عنوان القاگر برای تولید آستاگزانتین در این ریزجلبک می‌توانند استفاده شوند، همچنین لینولئیک اسید با تولید آستاگزانتین و بیان ِژن بتا کاروتن کتولاز رابطه مستقیم دارد.
کلیدواژه‌ها

موضوعات


1- Danxiang Han &Yantao Li QH. Astaxanthin in microalgae: pathways, functions and biotechnological mplications. ALGAE. 2013;28(2):131-47.
2- Khalili Z, Jalili H, Noroozi M, Amrane A. Effect of linoleic acid and methyl jasmonate on astaxanthin content of Scenedesmus acutus and Chlorella sorokiniana under heterotrophic cultivation and salt shock conditions. Journal of Applied Phycology. 2019:1-12.
3- Domı́nguez-Bocanegra AR, Guerrero Legarreta I, Martinez Jeronimo F, Tomasini Campocosio A. Influence of environmental and nutritional factors in the production of astaxanthin from Haematococcus pluvialis. Bioresource Technology. 2004; 92(2):209-14.
4- Smith DR. Haematococcus lacustris: the makings of a giant-sized chloroplast genome. AoB PLANTS. 2018:ply058-ply.
5- Raman V, Ravi S. Effect of salicylic acid and methyl jasmonate on antioxidant systems of Haematococcus pluvialis. Acta Physiologiae Plantarum. 2011; 33(3):1043-9.
6- Cheng Wh, Wong Ls, Hong Yz, Tan Ym, Ahmad Za. The Effect of Argentum And Cadmium Towards Astaxanthin Content In Green Algae, Haematococcus Pluvialis. Asian Journal of Microbiology, Biotechnology and Environmental Sciences. 2018; 20(1):43-7.
7- Schoefs Bt, Rmiki N-E, Rachadi J, Lemoine Y. Astaxanthin accumulation in Haematococcus requires a cytochrome P450 hydroxylase and an active synthesis of fatty acids. FEBS Letters. 2001; 500(3):125-128.
8- Xia B, Chen B, Sun X, Qu K, Ma F, Du M. Interaction of TiO 2 nanoparticles with the marine microalga Nitzschia closterium: Growth inhibition, oxidative stress and internalization. Science of the Total Environment. 2015; 508:525-33.
9- Khalili Z, Jalili H, Noroozi M, Amrane A, Ashtiani FR. Linoleic-acid-enhanced astaxanthin content of Chlorella sorokiniana (Chlorophyta) under normal and light shock conditions. Phycologia. 2020; 59(1):54-62.
10- Yu Z, Hao R, Zhang L, Zhu Y. Effects of TiO2, SiO2, Ag and CdTe/CdS quantum dots nanoparticles on toxicity of cadmium towards Chlamydomonas reinhardtii. Ecotoxicology and Environmental Safety. 2018; 156:75-86.
11- Wu F-Y, Tang C-Y, Guo Y-M, Bian Z-W, Fu J-Y, Lu G-H, et al. Transcriptome analysis explores genes related to shikonin biosynthesis in Lithospermeae plants and provides insights into Boraginales’ evolutionary history. Scientific Reports. 2017; 7:4477.
12- Karimi J, Mohsenzadeh S. Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings. Russian journal of plant physiology. 2016; 63(1):119-23.
13- Grosch W, Schwarz JM. Linoleic and linolenic acid as precursors of the cucumber flavor. Lipids. 1971;6(5):351-2.
14- Liu Y, Wang S, Wang Z, Ye N, Fang H, Wang D. TiO2, SiO2 and ZrO2 Nanoparticles Synergistically Provoke Cellular Oxidative Damage in Freshwater Microalgae. Nanomaterials. 2018;8(2):95.
15- Gao Z, Meng C, Zhang X, Xu D, Miao X, Wang Y, et al. Induction of salicylic acid (SA) on transcriptional expression of eight carotenoid genes and astaxanthin accumulation in Haematococcus pluvialis. Enzyme and Microbial Technology. 2012; 51(4):225-30.
16- Yu X, Chen L, Zhang W. Chemicals to enhance microalgal growth and accumulation of high-value bioproducts. Frontiers in microbiology. 2015; 6:56.
17- Del Campo J, Rodriguez H, Moreno J, Vargas M, Rivas J, Guerrero M. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Applied microbiology and biotechnology. 2004; 64(6):848-54
18- Kahila MMH, Najy AM, Rahaie M, Mir-Derikvand M. Effect of nanoparticle treatment on expression of a key gene involved in thymoquinone biosynthetic pathway in Nigella sativa L. Natural product research. 2018; 32(15):1858-62.
19- Gao Z, Meng C, Gao H, Zhang X, Xu D, Su Y, et al. Analysis of mRNA expression profiles of carotenogenesis and astaxanthin production of Haematococcus pluvialis under exogenous 2, 4-epibrassinolide (EBR). Biological Research. 2013; 46:201-6.
20- Khajavi M, Rahaie M, Ebrahimi A. The effect of TiO2 and SiO2 nanoparticles and salinity stress on expression of genes involved in parthenolide biosynthesis in Feverfew (Tanacetum parthenium L.). Caryologia International Journal of Cytology, Cytosystematics and Cytogenetics. 2019; 72(1):3-14.
21- Wu F-Y, Tang C-Y, Guo Y-M, Bian Z-W, Fu J-Y, Lu G-H, et al. Transcriptome analysis explores genes related to shikonin biosynthesis in Lithospermeae plants and provides insights into Boraginales’ evolutionary history. Scientific Reports. 2017; 7:4477.
22- Lu Y, Jiang P, Liu S, Gan Q, Cui H, Qin S. Methyl jasmonate-or gibberellins A3-induced astaxanthin accumulation is associated with up-regulation of transcription of β-carotene ketolase genes (bkts) in microalga Haematococcus pluvialis. Bioresource technology. 2010; 101(16):6468-74.
23- Karimi J, Mohsenzadeh S. Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings. Russian journal of plant physiology. 2016; 63(1):119-23.
24- Jorge León-Morcillo R, Martín J, Martín-Rodríguez, Vierheilig H, Antonio Ocampo J, Garrido J. Late activation of the 9-oxylipin pathway during arbuscular mycorrhiza formation in tomato and its regulation by jasmonate signalling2012. 3545-58 p.
25- Shanab SMM, Hafez RM, Fouad AS. A review on algae and plants as potential source of arachidonic acid. Journal of Advanced Research. 2018; 11:3-13.
26- Barbosa M, Valentão P, Andrade P. Biologically active oxylipins from enzymatic and nonenzymatic routes in macroalgae. Marine drugs. 2016;14(1):23.
27- León-Morcillo RJ, Ángel J, Vierheilig H, Ocampo JA, García-Garrido JM. Late activation of the 9-oxylipin pathway during arbuscular mycorrhiza formation in tomato and its regulation by jasmonate signalling. Journal of experimental botany. 2012; 63(10):3545-58.
28- Comotto M, Casazza AA, Aliakbarian B, Caratto V, Ferretti M, Perego P. Influence of TiO(2) Nanoparticles on Growth and Phenolic Compounds Production in Photosynthetic Microorganisms. The Scientific World Journal. 2014;2014: 961437.
29- de los Reyes C, Ávila-Román J, Ortega MJ, de la Jara A, García-Mauriño S, Motilva V, et al. Oxylipins from the microalgae Chlamydomonas debaryana and Nannochloropsis gaditana and their activity as TNF-α inhibitors. Phytochemistry. 2014; 102:152-61.
30- Boussiba S. Carotenogenesis in the green alga Haematococcus pluvialis: Cellular physiology and stress response. Physiologia Plantarum. 2000; 108(2):111-7.
31- Howe GA, Schilmiller AL. Oxylipin metabolism in response to stress. Current Opinion in Plant Biology. 2002; 5(3):230-6.
32- Solovchenko A. Physiology and adaptive significance of secondary carotenogenesis in green microalgae. Russian journal of plant physiology. 2013; 60(1):1-13.
33- Christian D, Zhang J, Sawdon AJ, Peng C-A. Enhanced astaxanthin accumulation in Haematococcus pluvialis using high carbon dioxide concentration and light illumination. Bioresource Technology. 2018; 256. 51-548.
34- Gao Z, Meng C, Zhang X, Xu D, Zhao Y, Wang Y, et al. Differential Expression of Carotenogenic Genes, Associated Changes on Astaxanthin Production and Photosynthesis Features Induced by JA in H. pluvialis. PLOS ONE. 2012;7(8):e42243.
35- Manzo S, Buono S, Rametta G, Miglietta ML, Schiavo S, Di Francia G. The diverse toxic effect of SiO2 and TiO2 nanoparticles toward the marine microalgae Dunaliella tertiolecta2015.
36- Qian H, Xu J, Lu T, Zhang Q, Qu Q, Yang Z, et al. Responses of unicellular alga Chlorella pyrenoidosa to allelochemical linoleic acid. Science of the Total Environment. 22-625:1415; 2018.
37- Chen T, Wei D, Chen G, Wang Y, Chen F. Employment of organic acids to enhance astaxanthin formation in heterotrophic Chlorella zofingiensis. Journal of food processing and preservation. 2009;33(2):271-84.
38- - Zhekisheva M, Boussiba S, Khozin‐Goldberg I, Zarka A, Cohen Z. Accumulation of oleic acid in Haematococcus pluvialis (chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters1. Journal of Phycology. 2002;38(2):325-31.
39- Li Y, Huang J, Sandmann G, Chen F. Glucose sensing and the mitochondrial alternative pathway are involved in the regulation of astaxanthin biosynthesis in the dark-grown Chlorella zofingiensis (Chlorophyceae). Planta. 2008;228(5):735-43.
40- Steinbrenner J, Linden H. Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control. Plant Molecular Biology. 2003;52(2):343-56