علوم و فنون شیلات

علوم و فنون شیلات

بررسی اثر گلوتارآلدئید بر رهایش پلی‌ال‌لایزین از فیلم ژلاتین استخراج شده از پوست تاسماهی سیبری (Acipenser baerii, Brandt, 1869)

نوع مقاله : پژوهشی اصیل

نویسندگان
1 بخش مهندسی منابع طبیعی و محیط زیست، دانشکده کشاورزی، دانشگاه شیراز
2 بخش علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه شیراز
3 بخش بهداشت مواد غذایی، دانشکده دامپزشکی، دانشگاه شیراز
چکیده
این پژوهش به منظور بررسی خواص مکانیکی و فیزیکی فیلم­های ژلاتین ماهی و تأثیر عامل شبکه­ساز گلوتارآلدئید بر کنترل رهایش عامل ضد میکروب پلی­ال­لایزین طراحی و اجرا شد. در این پژوهش تهیه فیلم به روش کاستینگ (casting)انجام گرفت و به فیلم تهیه شده از ژلاتین ماهی، 05/%0 گلوتارآلدئید(glutaraldehyde) و 05/0% پلی­ال­لایزین اضافه شد. نتایج نشان داد افزودن گلوتارآلدئید به فیلم ژلاتین ماهی موجب افزایش مقاومت کششی (80/6 مگاپاسکال)، کاهش حلالیت (51/38 %)، کاهش رطوبت (05/8 %)، کاهش نفوذپذیری به بخار آب (03/2 گرم، میلی متر/ساعت، میلی­متر مربع کیلو پاسکال)، افزایش تراکم و انسجام و ایجاد سطحی صاف و بدون خلل فرج با توجه به تصاویر SEM گردید. همچنین رهایش پلی­ال­لایزین از بیوپلیمر حاوی کراسلینکر (crosslinker) یا عامل شبکه­ساز گلوتارآلدئید به دلیل ایجاد اتصالات عرضی و به دام افتادن آن، آهسته­تر و مداوم­تر بود. با توجه به خصوصیات مکانیکی و فیزیکی فیلم­های تولید شده و پایداری و کنترل رهایش ترکیب ضدمیکروبی پلی­ال­لایزین، بنظر می­رسد فیلم­های حاوی 05/0 %عامل شبکه­ساز گلوتارآلدئید می­توانند در جهت ماندگاری محصولات فاسدشدنی پیشنهاد شوند.
کلیدواژه‌ها

موضوعات


1- Motelica L, Ficai D, Ficai A, Oprea OC, Kaya DA, Andronescu E. Biodegradable antimicrobial food packaging: Trends and perspectives. Foods. 2020;9(10):1–36.
2- Sohail M, Sun D-W, Zhu Z. Recent Developments in Intelligent Packaging for Enhancing Food Quality and Safety. Critical Reviews in Food Science and Nutrition. 2018;58(15):2650–2662.
3- Almasi H, Jahanbakhsh Oskouie M, Saleh A. A review on techniques utilized for design of controlled release food active packaging. Critical Reviews in Food Science and Nutrition. 2020;61(2):1–21.
4- Mujtaba M, Morsi RE, Kerch G, Elsabee MZ, Kaya M, Labidi J, et al. Current advancements in chitosan-based film production for food technology; A review. International Journal of Biological Macromolecules. 2019;121:889–904.
5- Xu J, Wei R, Jia Z, Song R. Characteristics and bioactive functions of chitosan/gelatin-based film incorporated with ε-polylysine and astaxanthin extracts derived from by-products of shrimp (Litopenaeus vannamei). Food Hydrocolloids. 2020;100:105436–105446.
6- Uranga J, Nguyen BT, Si TT, Guerrero P, De la Caba K. The effect of cross-linking with citric acid on the properties of agar/fish gelatin films. Polymers. 2020;12(2):291–303.
7- Benbettaïeb N, Karbowiak T, Debeaufort F. Bioactive edible films for food applications:Influence of the bioactive compounds on film structure and properties. Critical Reviews in Food Science and Nutrition. 2019;59(7):1137–1153.
8- Deng L, Li X, Miao K, Mao X, Han M, Li D, et al. Development of Disulfide Bond Crosslinked Gelatin/ε-Polylysine Active Edible Film with Antibacterial and Antioxidant Activities. Food and Bioprocess Technology. 2020;13(2):577–588.
9- Menzel C, Olsson E, Plivelic TS, Andersson R, Johansson C, Kuktaite R, et al. Molecular structure of citric acid cross-linked starch films. Carbohydrate Polymers. 2013;96(1):270–276.
10- Scopel BS, Pretto GL, Corrêa JIP, Baldasso C, Dettmer A, Santana RMC. Starch-Leather Waste Gelatin Films Cross-Linked with Glutaraldehyde. Journal of Polymers and the Environment Polymeric. 2020;28(7):1974–1984.
11- López De Dicastillo C, Rodríguez F, Guarda A, Galotto MJ. Antioxidant films based on cross-linked methyl cellulose and native Chilean berry for food packaging applications. Carbohydrate Polymers. 2016;136:1052–1060.
12- Liu F, Liu Y, Sun Z, Wang D, Wu H, Du L, et al. Preparation and antibacterial properties of ε-polylysine-containing gelatin/chitosan nanofiber films. International Journal of Biological Macromolecules. 2020;164:3376–3387.
13- Liu J, Xiao J, Li F, Shi Y, Li D, Huang Q. Chitosan-sodium alginate nanoparticle as a delivery system for ε-polylysine: Preparation, characterization and antimicrobial activity. Food Control. 2018;91:302–310.
14- Mousavi Z, Babaei S, Vardizadeh F, Naseri M. Evaluation of Gelatin Extracted from Siberian Sturgeon ( Acipenser baerii , Brandt , 1869 ) Skin and Biodegradable Film Fabrication. Journal of Fisheries Science and Technology. 2019;8(4):241–9. (in Persian)
15- López-Caballero ME, Gómez-Guillén MC, Pérez-Mateos M, Montero P. A chitosan-gelatin blend as a coating for fish patties. Food Hydrocolloids. 2005;19(2):303–311.
16- Chaibi S, Benachour D, Merbah M, Esperanza Cagiao M, Baltá Calleja FJ. The role of crosslinking on the physical properties of gelatin based films. Colloid and Polymer Science. 2015;293(10):2741–2752.
17- Samadi M, Shekarforoush SS, Gheisari HR. Antimicrobial effects of magnesium oxide nanoparticles and ε -poly-L-lysine against Escherichia coli O157 : H7 and Listeria monocytogenes. Journal of Medical Microbiology. 2016;10(2):33–41. (in Persian)
18- Ojagh SM, Rezaei M, Razavi SH, Hosseini SMH. Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chemistry. 2010;120(1):193–198.
19- Ballesteros LF, Teixeira JA, Mussatto SI. Extraction of polysaccharides by autohydrolysis of spent coffee grounds and evaluation of their antioxidant activity. Carbohydrt Polymer. 2017;157:258–266.
20- Lee J, Bhattacharyya D, Easteal AJ, Metson JB. Properties of nano-ZnO/poly(vinyl alcohol)/poly(ethylene oxide) composite thin films. Current Applied Physics. 2008;8(1):42–47.
21- Haase H, Jordan L, Keitel L, Keil C, Mahltig B. Comparison of methods for determining the effectiveness of antibacterial functionalized textiles. PLoS ONE. 2017;12(11):1–16.
22- Jiménez A, Fabra MJ, Talens P, Chiralt A. Edible and Biodegradable Starch Films: A Review. Food and Bioprocess Technology. 2012;5(6):2058–2076.
23- Fan HY, Duquette D, Dumont MJ, Simpson BK. Salmon skin gelatin-corn zein composite films produced via crosslinking with glutaraldehyde: Optimization using response surface methodology and characterization. International Journal of Biological Macromolecules. 2018;120:263–273.
24- Garavand F, Rouhi M, Razavi SH, Cacciotti I, Mohammadi R. Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. International Journal of Biological Macromolecules. 2017;104:687–707.
25- Yeng CM, Husseinsyah S, Ting SS. Chitosan/corn cob biocomposite films by cross-linking with glutaraldehyde. BioResources. 2013;8(2):2910–2923.
26- Bourtoom T. Edible protein films: Properties enhancement. International Food Research Journal. 2009;16(1):1–9.
27- Aider M. Chitosan application for active bio-based films production and potential in the food industry: Review. LWT - Food Science and Technology. 2010;43(6):837–842.
28- Wu J, Sun Q, Huang H, Duan Y, Xiao G, Le T. Enhanced physico-mechanical, barrier and antifungal properties of soy protein isolate film by incorporating both plant-sourced cinnamaldehyde and facile synthesized zinc oxide nanosheets. Colloids and Surfaces B: Biointerfaces. 2019;180(August):31–38.
29- Han Y, Yu M, Wang L. Physical and antimicrobial properties of sodium alginate/carboxymethyl cellulose films incorporated with cinnamon essential oil. Food Packaging and Shelf Life. 2018;15(October 2016):35–42.
30- Zinn S, Betz T, Schnell M. Structure determination of trans -cinnamaldehyde by broadband microwave spectroscopy. Pccp. 2015;17:16080–16095.
31- Dammak I, Lourenço RV, Sobral PJ do A. Active gelatin films incorporated with Pickering emulsions encapsulating hesperidin: Preparation and physicochemical characterization. Journal of Food Engineering. 2018;296:9–20.
32- Wang L, Wang X, Wu H, Liu R. Overview on biological activities and molecular characteristics of sulfated polysaccharides from marine green algae in recent years. Marine Drugs. 2014;12(9):4984–5020.
33- Zhang W, Shu C, Chen Q, Cao J, Jiang W. The multi-layer film system improved the release and retention properties of cinnamon essential oil and its application as coating in inhibition to penicillium expansion of apple fruit. Food Chemistry. 2019;299(May):125109.
34- Arcan I, Yemenicioǧlu A. Development of flexible zein-wax composite and zein-fatty acid blend films for controlled release of lysozyme. Food Research International. 2013;51(1):208–216.
35- Sun Z, Wang CH. Quasielastic Light Scattering from Semidilute Ternary Polymer Solutions of Polystyrene and Poly (methyl methacrylate) in Benzene. Macromolecules. 1996;29(6):2011–2018.
36- Ziiberman & sofer. A Mathematical Model for Predicting Controlled Release of Bioactive Agents from Composite Fiber Structures. Journal of Biomedical Materials Research Part A. 2006;79(4):963–973.
37- Hiwale P, Lampis S, Conti G, Caddeo C, Murgia S, Fadda AM, et al. In vitro release of lysozyme from gelatin microspheres: Effect of cross-linking agents and thermoreversible gel as suspending medium. Biomacromolecules. 2011;12(9):3186–3193.
38- Lin L, Gu Y, Cui H. Novel electrospun gelatin-glycerin-ε-Poly-lysine nanofibers for controlling Listeria monocytogenes on beef. Food Packaging and Shelf Life. 2018;18(June):21–30.
39- Li YQ, Han Q, Feng JL, Tian WL, Mo HZ. Antibacterial characteristics and mechanisms of poly-lysine against Escherichia coli and Staphylococcus aureus. Food Control. 2014;43:22–27.