1. Terova G, Gini E, Gasco L, Moroni F, Antonini M, Rimoldi S. Effects of full replacement of dietary fishmeal with insect meal from Tenebrio molitor on rainbow trout gut and skin microbiota. Journal of Animal Science and Biotechnology. 2021;12(1):1-4.
2. Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, Forster I, Gatlin DM, Goldburg RJ, Hua K, Nichols PD. Feeding aquaculture in an era of finite resources. Proceedings of the National Academy of Sciences. 2009;106(36):15103-10.
3. Van Huis A. Potential of insects as food and feed in assuring food security. Annual review of entomology. 2013;58:563-83.
4. Barroso FG, de Haro C, Sánchez-Muros MJ, Venegas E, Martínez-Sánchez A, Pérez-Bañón C. The potential of various insect species for use as food for fish. Aquaculture. 2014;422:193-201.
5. Sankian Z, Khosravi S, Kim YO, Lee SM. Effects of dietary inclusion of yellow mealworm (Tenebrio molitor) meal on growth performance, feed utilization, body composition, plasma biochemical indices, selected immune parameters and antioxidant enzyme activities of mandarin fish (Siniperca scherzeri) juveniles. Aquaculture. 2018;496:79-87.
6. Henry M, Gasco L, Piccolo G, Fountoulaki E. Review on the use of insects in the diet of farmed fish: past and future. Animal Feed Science and Technology. 2015 ;203:1-22.
7. Howe ER, Simenstad CA, Toft JD, Cordell JR, Bollens SM. Macroinvertebrate prey availability and fish diet selectivity in relation to environmental variables in natural and restoring north San Francisco bay tidal marsh channels. San Francisco Estuary and Watershed Science. 2014;12(1).
8. Gahukar, R.T. Edible Insects farming: efficiency and impact on family livelihood, food security, and environment compared with livestock and crops. In: Dossey, A.T., Morales-Ramos, J.A., Rojas, M.G. (Eds.), Insects as Sustainable Food Ingredients: Production, Processing and Food Applications. Academic Press, San Diego, CA, USA. 2016; 85–111.
9. van Huis A, Oonincx DG. The environmental sustainability of insects as food and feed. A review. Agronomy for Sustainable Development. 2017;37(5):1-4.
10. Biancarosa I, Sele V, Belghit I, Ørnsrud R, Lock EJ, Amlund H. Replacing fish meal with insect meal in the diet of Atlantic salmon (Salmo salar) does not impact the amount of contaminants in the feed and it lowers accumulation of arsenic in the fillet. Food Additives & Contaminants: Part A. 2019;36(8):1191-205.
11. Biasato I, Gasco L, De Marco M, Renna M, Rotolo L, Dabbou S, Capucchio MT, Biasibetti E, Tarantola M, Bianchi C, Cavallarin L. Effects of yellow mealworm larvae (Tenebrio molitor) inclusion in diets for female broiler chickens: implications for animal health and gut histology. Animal Feed Science and Technology. 2017;234:253-63.
12. Schiavone A, Dabbou S, De Marco M, Cullere M, Biasato I, Biasibetti E, Capucchio MT, Bergagna S, Dezzutto D, Meneguz M, Gai F. Black soldier fly larva fat inclusion in finisher broiler chicken diet as an alternative fat source. Animal. 2018;12(10):2032-9.
13. Nogales‐Mérida S, Gobbi P, Józefiak D, Mazurkiewicz J, Dudek K, Rawski M, Kierończyk B, Józefiak A. Insect meals in fish nutrition. Reviews in Aquaculture. 2019;11(4):1080-103.
14. Wilson RP. Amino acids and proteins. In: Halver JE, Hardy RW(eds) Fish Nutrition. Academic Press, San Diego, CA. 2002; 144-175.
15. Zhao W, Lu L, Tang Y. Research and application progress of insect antimicrobial peptides on food industry. International Journal of food engineering. 2010;6(6).
16. Ravi C, Jeyashree A, Devi KR. Antimicrobial peptides from insects: an overview. Research in Biotechnology. 2011;2(5):1-7.
17. Barroso FG, Sánchez-Muros MJ, Rincón MÁ, Rodriguez-Rodriguez M, Fabrikov D, Morote E, Guil-Guerrero JL. Production of n-3-rich insects by bioaccumulation of fishery waste. Journal of Food Composition and Analysis. 2019;82:103237.
18. Magalhães R, Sánchez-López A, Leal RS, Martínez-Llorens S, Oliva-Teles A, Peres H. Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture. 2017;476:79-85.
19. Williams, J.P; Williams, J.R; Kirabo, A.; Chester, D.; Peterson, M. Nutrient Content and Health Benefits of Insects. In Insects as Sustainable Food Ingredients; Elsevier BV: Amsterdam, The Netherlands, 2016; 61–84.
20. Ng WK, Liew FL, Ang LP, Wong KW. Potential of mealworm (Tenebrio molitor) as an alternative protein source in practical diets for African catfish, Clarias gariepinus. Aquaculture Research. 2001;32:273-80.
21. Belforti M, Gai F, Lussiana C, Renna M, Malfatto V, Rotolo L, De Marco M, Dabbou S, Schiavone A, Zoccarato I, Gasco L. Tenebrio molitor meal in rainbow trout (Oncorhynchus mykiss) diets: effects on animal performance, nutrient digestibility and chemical composition of fillets. Italian Journal of Animal Science. 2015;14(4):4170.
22. Sánchez‐Muros M, De Haro C, Sanz A, Trenzado CE, Villareces S, Barroso FG. Nutritional evaluation of Tenebrio molitor meal as fishmeal substitute for tilapia (Oreochromis niloticus) diet. Aquaculture Nutrition. 2016;22(5):943-55.
23. Gasco L, Henry M, Piccolo G, Marono S, Gai F, Renna M, Lussiana C, Antonopoulou E, Mola P, Chatzifotis S. Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: growth performance, whole body composition and in vivo apparent digestibility. Animal Feed Science and Technology. 2016;220:34-45.
24. Piccolo G, Iaconisi V, Marono S, Gasco L, Loponte R, Nizza S, Bovera F, Parisi G. Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Animal Feed Science and Technology. 2017;226:12-20.
25. Iaconisi V, Marono S, Parisi G, Gasco L, Genovese L, Maricchiolo G, Bovera F, Piccolo G. Dietary inclusion of Tenebrio molitor larvae meal: Effects on growth performance and final quality treats of blackspot sea bream (Pagellus bogaraveo). Aquaculture. 2017;476:49-58.
26. Su J, Gong Y, Cao S, Lu F, Han D, Liu H, Jin J, Yang Y, Zhu X, Xie S. Effects of dietary Tenebrio molitor meal on the growth performance, immune response and disease resistance of yellow catfish (Pelteobagrus fulvidraco). Fish & shellfish immunology. 2017;69:59-66.
27. Yesilayer N, Oz M, Karsli Z, Aral O, Karaçuha A, Oz U. Growth performance and feed utilization of koi carp (Cyprinus carpio L., 1758) fed partial or total replacement of fish meal with hazelnut meal and soybean meal.
28. Haniffa MA, Benziger PA, Arockiaraj AJ, Nagarajan M, Siby P. Breeding behaviour and embryonic development of koi carp (Cyprinus carpio). TAIWANIA,TAIPEI.2007;52(1):93.
29. Mooraki N, Dadgar SH, Naderi MS. Effect of Petroselinum sativum on growth performance and survival of koi carp (Cyprinus carpio va Koi). Journal of Aquaculture Development. 2013; 8 (2):63-72. (in Persia)
30. NRC (National Research Council). Nutrient Requirements of Fish. National Academy Press, Washington DC, USA. 2011.
31. AOAC. Official Method 950.89 Horwitz, W., Latimer, G. (Eds). Official Methods of Analysis of AOAC International, 18th Edition, Association of Official Analytical Chemists, Gaithersburg, USA. 2005.
32. Zamani A, Khajavi M. Assessment of growth performance and proteolytic enzymes activity of rainbow trout (Oncorhynchus mykiss) fry fed by different levels of single cell protein . Iranian Scientific Fisheries Journal. 2019; 28 (4) :103-115 (in Persia).
33. Hamza N, Mhetli M, Khemis IB, Cahu C, Kestemont P. Effect of dietary phospholipid levels on performance, enzyme activities and fatty acid composition of pikeperch (Sander lucioperca) larvae. Aquaculture. 2008;275(1-4):274-82.
34. Nayak J, Viswanathan Nair PG, Ammu K, Mathew S. Lipase activity in different tissues of four species of fish: rohu (Labeo rohita Hamilton), oil sardine (Sardinella longiceps Linnaeus), mullet (Liza subviridis Valenciennes) and Indian mackerel (Rastrelliger kanagurta Cuvier). Journal of the Science of Food and Agriculture. 2003;83(11):1139-42.
35. Walter HE. Proteinases: methods with hemoglobin, casein and azocoll as substrates. In: Bergmeyer, H.U. Ed. Methods of Enzymatic Analysis, vol. V. Verlag Chemie, Weinheim. 1984; 270–277.
36. Erlanger B, Kokowsky N, Cohen W. The preparation and properties of two new chromogenic substrates of trypsin. Archive Biochemistry Biophysics. 1961; 95: 271-278.
37. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry. 1951;193(1): 265-275.
38. Reyes M, Rodríguez M, Montes J, Barroso FG, Fabrikov D, Morote E, Sánchez-Muros MJ. Nutritional and growth effect of insect meal inclusion on seabass (Dicentrarchuss labrax) feeds. Fishes. 2020;5(2):16.
39. Mastoraki M, Ferrándiz PM, Vardali SC, Kontodimas DC, Kotzamanis YP, Gasco L, Chatzifotis S, Antonopoulou E. A comparative study on the effect of fish meal substitution with three different insect meals on growth, body composition and metabolism of European sea bass (Dicentrarchus labrax L.). Aquaculture. 2020;528:735511.
40. Li S, Ji H, Zhang B, Zhou J, Yu H. Defatted black soldier fly (Hermetia illucens) larvae meal in diets for juvenile Jian carp (Cyprinus carpio var. Jian): Growth performance, antioxidant enzyme activities, digestive enzyme activities, intestine and hepatopancreas histological structure. Aquaculture. 2017; 477:62-70.
41. Sánchez-Muros MJ, Barroso FG, Manzano-Agugliaro F. Insect meal as renewable source of food for animal feeding: a review. Journal of Cleaner Production. 2014;65:16-27.
42. Marono S, Piccolo G, Loponte R, Di Meo C, Attia YA, Nizza A, Bovera F. In vitro crude protein digestibility of Tenebrio molitor and Hermetia illucens insect meals and its correlation with chemical composition traits. Italian journal of animal science. 2015; 14(3):3889.
43. Belghit I, Liland NS, Waagbø R, Biancarosa I, Pelusio N, Li Y, Krogdahl Å, Lock EJ. Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture. 2018;491:72-81.