علوم و فنون شیلات

علوم و فنون شیلات

ارزیابی مزارع موجود آبزی پروردی دریایی استان مازندران بر مبنای معیارهای مکانی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانش‌آموخته کارشناسی ارشد محیط‌زیست، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس
2 استادیار گروه محیط زیست، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس
3 استادیار گروه شیلات، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس
چکیده
با توجه به افزایش جمعیت جهانی تقاضا برای مصرف آبزیان در جهان رو به افزایش است، بنابراین بهره­گیری از روش­های نوین مانند آبزی­پروری دریایی می­تواند منبع مطمئنی برای تهیه و تأمین آبزیان در جهان باشد. هدف از مطالعه­ی حاضر آنالیز و تحلیل مکانی مزارع آبزی‌پروری دریایی موجود در سواحل استان مازندران می‌باشد.

در این مطالعه، سه دسته معیار (کیفیت آب، اقتصادی- اجتماعی و فیزیکی- محیطی) برای آنالیز و تحلیل مکانی مزارع آبزی­پروری موجود در سواحل مازندران در نظر گرفته شد که از سیستم اطلاعات جغرافیایی (GIS) و فرآیند تحلیل سلسله مراتبی (AHP)، بر اساس تعریف قانون تصمیم بهره‌گیری شده است و در پایان به تحلیل مزارع آبزی­پروری موجود (9 مزرعه) با استفاده تابع Extract پرداخته می­شود.

نتایج نشان می­دهد، موقعیت مزارع حاضر می­تواند به مناطق مطلوب­تر با ریسک کمتر انتقال یابد. از بین مزارع موجود، مزرعه­ی 1 و 2 واقع در سواحل جویبار و بابلسر، دارای مناسبترین وضعیت و بالاترین مقدار مطلوبیت می­باشند. همچنین نتایج وزن­دهی بین سه گروه پارامترهای کیفیت آب، فیزیکی و اجتماعی-اقتصادی نشان می­دهد؛ گروه کیفیت آب با توجه به اهمیت معیارهای دما، کدورت و کلروفیل در آبزی­پروری دریایی دارای وزن بیشتر نسبت به سایر گروه­ها می­باشد (4034/0) و سپس به گروه فاکتورهای فیزیکی (3808/0) نسبت به فاکتورهای اجتماعی (2168/0) وزن بیشتری داده شده است.

یافته­ های این تحقیق، توانایی سیستم اطلاعات جغرافیایی و نیز تصاویر ماهواره­ای را در ارزیابی و مکانیابی آبزی­پروری دریایی نشان می­دهد.
کلیدواژه‌ها

موضوعات


1-Beveridge, M. C.. Cage aquaculture. John Wiley & Sons, 2008.
2- Micael, J., Costa, A. C., Aguiar, P., Medeiros, A., & Calado, H., 2015. Geographic Information System in a Multi-Criteria Tool for Mariculture Site Selection. Coastal Management, 43(1), pp.52–66. Available at: http://www.tandfonline.com/doi/abs/10.1080/08920753.2014.985178.
3- Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture 2018–Meeting the sustainable development goals. 2018; FAO.‌
4- Haghshenas, E.; Gholamalifard, M.; Mahmoudi, N. Applied introduction of ecosystem service modeling of marine aquaculture: Approach for estimation of production and net present value (NPV). ISFJ, 2017, 26.1: 141-152.
5- Dapueto, G., Massa, F., Costa, S., Cimoli, L., Olivari, E., Chiantore, M., ... & Povero, P.. A spatial multi-criteria evaluation for site selection of offshore marine fish farm in the Ligurian Sea, Italy. Ocean & Coastal Management, 2015, 116: 64-77.
6- Mokhtari, a.a., Chizari, M. and Salehi, H. Perceptions of Iranian Fisheries Experts toward Sustainable Aquaculture. 2006. 87-97.
7- Radiarta, I. Nyoman; saitoh, Sei-Ichi; YASUI, Hajime. Aquaculture site selection for Japanese kelp (Laminaria japonica) in southern Hokkaido, Japan, using satellite remote sensing and GIS-based models. ICES Journal of Marine Science, 2011, 68.4: 773-780.
8- Study of the main framework of aquaculture development in sea cages in Iran., 2004. Report of Rafa-Norway Company, Translation: Research Unit of Saz Abapardazan Consulting Engineering Company, Publishing Unit of Saz Abab Pardazan Consulting Engineering Company, Volume 1 and Volume II.
9- Pérez, O. M., Ross, L. G., Telfer, T. C., & del Campo Barquin, L. M. Water quality requirements for marine fish cage site selection in Tenerife (Canary Islands): predictive modelling and analysis using GIS. Aquaculture. 2003; 224(1-4), 51- 8.
10- Perez, O. M., Telfer, T. C., & Ross, L. G.; ROSS, Lindsay G. Geographical information systems‐based models for offshore floating marine fish cage aquaculture site selection in Tenerife, Canary Islands. Aquaculture Research, 2005, 36.10: 946-961.
11-Radiarta, I. Nyoman; Saitoh, Sei-Ichi; Miyazono, Akira. GIS-based multi-criteria evaluation models for identifying suitable sites for Japanese scallop (Mizuhopecten yessoensis) aquaculture in Funka Bay, southwestern Hokkaido, Japan. Aquaculture, 2008, 284.1-4: 127-135. Available at: http://dx.doi.org/10.1016/j.aquaculture.2008.07.048.
12- Falconer, L., Hunter, D. C., Scott, P. C., Telfer, T. C., & Ross, L. G.. Using physical environmental parameters and cage engineering design within GIS-based site suitability models for marine aquaculture. Aquaculture Environment Interactions, 2013, 4.3: 223-237.
13. Falconer, Lynne; Telfer, Trevor C.; ROSS, Lindsay G. Investigation of a novel approach for aquaculture site selection. Journal of environmental management, 2016, 181: 791-804.
14. Hadipour, Abouzar; VAFAIE, Freydoon; HADIPOUR, Vahid. Land suitability evaluation for brackish water aquaculture development in coastal area of Hormozgan, Iran. Aquaculture international, 2015, 23.1: 329-343.
15. Eastman J. R., 2015. TerrSet Manual System. Accessed in TerrSet [18.10]. Worcester, MA: Clark University, 392 pag.
16. Grant, Jon, et al. Remote sensing applications in marine aquaculture. IOCCG. Remote sensing in fisheries and aquaculture. Reports of the International Ocean Colour Coordinatng Group N° 8, 2009, 6.
17- Lau, Winnie wy. Beyond carbon: conceptualizing payments for ecosystem services in blue forests on carbon and other marine and coastal ecosystem services. Ocean & Coastal Management, 2013, 83: 5-14.
18- Kara, A. B., Wallcraft, A. J., Metzger, E. J., & Gunduz, M.. Impacts of freshwater on the seasonal variations of surface salinity and circulation in the Caspian Sea. Continental Shelf Research, 2010, 30.10-11: 1211-1225.
19- Eastman, R. J., 2012(a). IDRISI guid to GIS and Image processing. Accessed in IDRISI Selva 17.00, Worcester, MA: Clark University 354 p.
20- Eastman, J.R., 2012(b). IDRISI Help System. Accessed in IDRISI 17.00. Worcester, MA: Clark University
21- Mahini, A. Salman; G, M. Siting MSW landfills with a weighted linear combination methodology in a GIS environment. International Journal of Environmental Science & Technology, 2006, 3.4: 435-445.
22- Liu, Y., Saitoh, S. I., Radiarta, I. N., Isada, T., Hirawake, T., Mizuta, H., & Yasui, H. Improvement of an aquaculture site-selection model for Japanese kelp (Saccharina japonica) in southern Hokkaido, Japan: an application for the impacts of climate events. ICES Journal of Marine Science, 2013, 70.7: 1460-1470. https://doi.org/10.1093/icesjms/fst108.
23- Makhdom, Majid et al. (2001). Environmental Assessment and Planning with Geographic Information Systems, Tehran, Tehran University Press. (Persian).
24- Saaty, R. W., 1987. The analytic hierarchy process what it is and how it is used. Mathematical Modeling 9 (3), 161-176.