علوم و فنون شیلات

علوم و فنون شیلات

مقایسه اثرات سطوح منابع روی بر عملکرد رشد، ترکیب لاشه، شاخص های خونی و ایمنی- بیوشیمیایی سرم بچه فیل ‌ماهی پرورشی (Huso huso Linnaeus, 1758)

نوع مقاله : پژوهشی اصیل

نویسندگان
1 انیستیتو تحقیقات بین المللی ماهیان خاویاری، مؤسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، صندوق پستی 3464-41635 رشت، ایران
2 گروه شیلات، دانشکده منابع طبیعی، واحد بندرعباس، دانشگاه آزاد اسلامی، بندرعباس، ایران
3 گروه شیلات، واحد علوم و تحقیقات، دانشکاه آزاد اسلامی، تهران، ایران
چکیده
هدف این پژوهش، مقایسه اثرات سطوح منابع روی برکیفیت رشد و لاشه و برخی شاخص­های ­خونی و سرم شناسی بچه­ فیل‏ ماهی پرورشی (Huso huso Linnaeus, 1758) بود. تعداد 315 عدد ‏بچه فیل‏ ماهی (0.29 ± 8.4 گرم) در 21 مخزن فایبرگلاس 500 لیتری (15 عدد ماهی در هر مخزن) با هفت جیره آزمایشی شامل یک جیره شاهد و شش جیره غذایی حاوی روی (میلی­ گرم در کیلوگرم جیره) به دو ­فرم­ معدنی (تیمارهای ZnSul15، ZnSul30، ZnSul60) و ارگانیک (تیمارهای ZnMet15، ZnMet30، ZnMet60) با 3 تکرار درهرتیمار به ­مدت 12 هفته تغذیه شدند. بهترین مقادیر وزن نهایی و ضریب تبدیل غذایی درتیمارهای ZnMet15 و ZnMet60 مشاهده گردید. گلبولهای قرمز خون، هموگلوبین و هماتوکریت­ تحت­ تأثیر افزایش مکمل روی روند افزایشی نشان­ دادند. افزایش پروتنئین لاشه در تیمار ZnMet30 نسبت به تیمارهای شاهد، ZnSul15 و ZnSul60 معنی­ دار بود (P≤0.05). کاهش چربی ­لاشه در تیمارهای ZnSul30 و ZnSul60 نسبت ­­به ­سایر تیمارها معنی­ دار بود (P≤0.05). کلسترول و تری‏ گلیسیرید سرم درتیمارهای ZnMet نسبت به تیمار شاهد کاهش معنی ­داری ­یافت (P≤0.05). کاهش گلوکز سرم در تیمارهای ZnMet15 و ZnMet60و نیز افزایش لیزوزیم سرم در تیمارهای ZnMet30 و ZnMet60 نسبت ­به تیمارشاهد­ معنی ­دار بود (P≤0.05). نتایج نشان دادکه اغلب شاخص­ ها درتیمارهای ZnMet نسبت ­به سایرتیمارها عملکردبهتری داشتند و به­ عنوان جیره بهینه برای بچه فیل­ ماهی پرورشی پیشنهاد می­ گردند.
کلیدواژه‌ها

موضوعات


1- Liang JJ, Yang HJ, Liu YJ, Tian LX, Liang GY. Dietary zinc requirement of juvenile grass carp (Ctenopharyngodon idella) based on growth and mineralization. Aquacalt Nutr. 2012;18(4):380-7.
2- Lin S, Lin X, Yang Y, Li F, Luo L. Comparison of chelated zinc and zinc sulfate as zinc sources for growth and immune response of shrimp, Litopenaeus vannamei. Aquaculture. 2013;406-407:79-84
3- Houng-Yung C, Yu-Chun C, Li-Chi H, Meng-Hsien C. Dietary zinc requirements of juvenile grouper, Epinephelus malabaricus. Aquaculture. 2014;432:360-4.
4- Kaushik S. Mineral nutrition. In: Guillaume J, Kaushik S, Bergot P, Metailler R. Nutrition and feeding of fish and crustaceans. Chichester, UK: Springer-Praxis Publishing Ltd.; 2002. pp. 169-81.
5- Buentello JA, Goff JB, Gatlin III DM. Dietary zinc requirement of hybrid striped bass, Morone chrysops × Morone saxatilis, and bioavailability of two chemically different zinc compounds. J World Aquac Soc. 2009;40(5):687-94.
6- Huang F, Jiang M, Wena H, Wua F, Liua W, Jb Tiana, Yang C. Dietary zinc requirement of adult Nile tilapia, Oreochromis niloticus, fed semi-purified diets, and effects on tissue mineral composition and antioxidant responses. Aquaculture. 2015; 439:53-9
7- Glover CN, Bury NR, Hogstrand C. Intestinal zinc uptake in freshwater rainbow trout: evidence for apical pathways associated with potassium efflux and modified by calcium. Biochim Biophys Acta Biomembr. 2004. 1663(1-2:214-21.
8- Carpene E, Andreani G, Monari M, Kindt M, Isani G. Biochemical changes during post-larval growth in white muscle of gilthead sea bream (Sparus aurata) fed zinc-fortified diets. Vet Res Commun. 2003;27:215-8.
9- Watanabe T, Kiron V, Satoh S. Trace minerals in fish nutrition. Aquaculture. 1997;151(1-4):185-207.
10- Moazenzadeh K, Islami HR, Zamini A, Soltani M. Dietary zinc requirement of Siberian sturgeon (Acipenser baerii, Brandt 1869) juveniles, based on the growth performance and blood parameters. Int. Aquat. Res. 2017;9(1): 25-35.
11- Wang C, Lovell RT. Organic selenium sources, selenomethionine and selenoyeast, have higher bioavailability than an inorganic selenium source, sodium selenite, in diets for channel catfish (Ictalurus punctatus). Aquaculture. 1997;152(1-4), 223-34.
12- Paripatananont T, Lovell RT. Responses of channel catfish fed organic and inorganic sources of zinc to Edwardsiella ictaluri challenge. Journal of Aquatic Animal Health. 1995;7(2):147-54.
13- Satoh S, Apines MJ, Tsukioka T, Kiron V, Watanabe T, Fujita S. 2001. Bioavailability of amino acids-chelated and glass-embedded manganese to rainbow trout, Oncorhynchus mykiss, fingerlings. Aquacult Res. 2001;32(S1):18-25.
14- Apines-Amar MJS, Satoh S, Caipang CMA, Kiron V, Watanabe T, Aoki T. Amino acid-chelate: a better source of Zn,Mn, and Cu for rainbowtrout, Oncorhynchus mykiss. Aquaculture. 2004;240(1-4):345-58.
15- Tan BP, Mai KS. Zinc methionine and zinc sulfate as sources of dietary zinc for juvenile abalone, Haliotis discus hannai Ino. Aquaculture. 2001;192(1):67-84.
16- Kishawy AT, Roushdy EM, Hassan FA, Mohammed HA, Abdelhakim TM. Comparing the effect of diet supplementation with different zinc sources and levels on growth performance, immune response and antioxidant activity of tilapia, Oreochromis niloticus. Aquacult Nutr. 2020;26(6):1926-42.
17- Do carmo e sa MV, Pezzato LE, Barros MM, Magalhaes padilha P. Relative bioavailability of zinc in supplemental inorganic and organic sources for Nile tilapia Oreochromis niloticus fingerlings. Aquacul Nutr. 2005;11(4):273-81.
18- Khalil HS, Mansour AT, Godaa AMA, Omar EA. Effect of selenium yeast supplementation on growth performance, feed utilization, lipid profile, liver and intestine histological changes, and economic benefit in meagre, Argyrosomus regius, fingerlings. Aquaculture. 2019;501(25):135-43.
19- Zhao, CY, Tan SX, Xiao XY, Qiu XS, Pan JQ, Tang ZX. Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biol Trace Elem Res. 2014;160(3):361-7.
20- Goff JP. Invited review: Mineral absorption mechanisms, mineral interactions that affect acid–base and antioxidant status, and diet considerations to improve mineral status. J Dairy Sci. 2018;101(4): 2763-2813.
21- Silva MS, Kröckel S, Prabhu PAJ, Koppe W, Ørnsrud R, Waagbø R, Araujo P, Amlund H. Apparent availability of zinc, selenium and manganese as inorganic metal salts or organic forms in plant-based diets for Atlantic salmon (Salmo salar). Aquaculture. 2019;503:562-70.
22- Brown TF, Zeringue LK. Laboratory evaluations of solubility and structural integrity of complexed and chelated trace mineral supplements. J Dairy Sci. 1994;77(1):181-9.
23- Du Z, Luo W, Liu Y, Xu H, Wu J, Wang T, Yang L, Wen, A. The dietary zinc requirement of a benthic fish Paramisgurnus dabryanus. Aquacalt Res. 2020;51(4):1346-52.
24- Mohseni M, Hassani MHS, Pourali FH, Pourkazemi M, Bai SC. The optimum dietary carbohydrate/lipid ratio can spare protein in growing beluga, Huso huso. J Appl Ichthyol. 2011;27(2):775-80.
25- Mohseni M, Pourali, HR., Kazemi R, Bai SC. Evaluation of the optimum dietary protein level for the maximum growth of juvenile beluga (Huso huso L. 1758). Aquacult Res. 2014;45(11):1832-41.
26- AOAC. Official methods of analysis. 16th Edition. Arlington: Association of Official Analytical Chemists; 1995.
27- Houston CB. Blood and circulation. In: Shreck CB, Moyle PB.
Methods for fish biology. USA.: American Fisheries Society; 1990. pp. 273-322.
28- Siwicki AK, Anderson DP, Rumsey GL. Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Vet Immunol Immunopathol. 1994;41(1-2):125-39.
29- Subramanian S, MacKinnon SL, Ross NW. A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comp Biochem Physiol B Biochem Mol Biol. 2007;148(3):256-63.
30- Izquierdo MS, Ghrab W, Roo J, Hamre K, Hernández‐Cruz CM, Bernardini G, Terova G, Saleh R. Organic, inorganic and nanoparticles of Se, Zn and Mn in early weaning diets for gilthead seabream (Sparus aurata; Linnaeus, 1758). Aquacult Res. 2017;48(6):2852-67.
31- Shi B, Xu F, Zhou Q, Regan MK, Betancor M., Tocher DR, Sun M, Meng F, Jiao L, Jin M. Dietary organic zinc promotes growth, immune response and antioxidant capacity by modulating zinc signaling in juvenile Pacific white shrimp (Litopenaeus vannamei). Aquacult Rep. 2021;19:100638.
32- Abdel-Tawwab M, Abdel-Rahman AM, Ismael NE. Evaluation of commercial live bakers’ yeast, Saccharomyces cerevisiae as a growth and immunity promoter for Fry Nile tilapia, Oreochromis niloticus (L.) challenged in situ with Aeromonas hydrophila. Aquaculture. 2008;280(1-4):185-9.
33- Sallam AE, Mansour AT, Alsaqufi AS, Salem MES, El-Feky MM. Growth performance, anti-oxidative status, innate immunity, and ammonia stress resistance of Siganus rivulatus fed diet supplemented with zinc and zinc nanoparticles. Aquacult Rep. 2020;18:100410.
34- Taheri S, Banaee M, Haghi BN, Mohiseni M. Effects of dietary supplementation of zinc oxide nanoparticles on some biochemical biomarkers in common carp (Cyprinus carpio). Int J Aquat Biol. 2017;5(5):286-94.
35- Zhao HX, Cao JM, Liu XH, Zhu X, Chen SC, Lan HB, Wang AL. Effect of supplemental dietary zinc sources on the growth and carbohydrate utilization of tilapia Smith 1840, Oreochromis niloticus× Oreochromis aureus. Aquacult Nutr. 2011;17(1):64-72.
36- Akram Z, Fatima M, Shah SZH, Afzal M, Hussain SM, Hussain M, Khan ZI, Akram K. Dietary zinc requirement of Labeo rohita juveniles fed practical diets. J Appl Anim Res. 2019;47(1):223-29.
37- Abu-Elala N, Marzouk M, Moustafa M. Use of different Saccharomyces cerevisiae biotic forms as immune-modulator and growth promoter for Oreochromis niloticus challenged with some fish pathogens. Int J Vet Sci Med. 2013;1(1):21-9.
38- e Sá MVDC, Pezzato LE, Lima MMBF, de Magalhães Padilha P. Optimum zinc supplementation level in Nile tilapia Oreochromis niloticus juveniles diets. Aquaculture. 2004;238(1-4):385-401.
39- Lall SP. The minerals. In: Halver JE, Hardly RW. Fish nutrition, 3rd edn. San Diego, USA.: Academic Press; 2002. pp. 259-309.
40- Havukainen H, Haataja S, Kauko A, Pulliainen AT, Salminen A, Haikarainen T, Finne J, Papageorgiou AC. Structural basis of the zinc‐and terbium‐mediated inhibition of ferroxidase activity in Dps ferritin‐like proteins. Protein Sci. 2008;17(9):1513-21.
41- Ibrahim MS, El-Gendi GM, Ahmed AI, El-Haroun ER, Hassaan MS. Nano Zinc Versus Bulk Zinc Form as Dietary Supplied: Effects on Growth, Intestinal Enzymes and Topography, and Hemato-biochemical and Oxidative Stress Biomarker in Nile Tilapia (Oreochromis niloticus Linnaeus, 1758). Biol Trace Elem Res. 2021. https://doi.org/10.1007/s12011-021-02724-z.
42- Sansuwan K, Jintasataporn E, Chumkam S. Effects of dietary zinc amino acid complex and zinc sulfate on growth performance, digestive enzyme activity and immune response in Asian seabass (Lates calcarifer). J Aquacalt Res Dev. 2019;10:572.
43- Mondal AH, Behera T, Swain P, Das R, Sahoo SN, Mishra SS, Das J, Ghosh K. 2020. Nano zinc vis‐à‐vis inorganic Zinc as feed additives: Effects on growth, activity of hepatic enzymes and non‐specific immunity in rohu, Labeo rohita (Hamilton) fingerlings. Aquacult Nutr. 2020;26(4):1211-22.
44- Banaee M, Vaziriyan M, Derikvandy A, Haghi BN, Mohiseni M. Biochemical and physiological effect of dietary supplements of ZnO nanoparticles on common carp (Cyprinus carpio). Int J Aquat Biol. 2019;7(1):56-64.
45- Foster M, Petocz P, Samman S. Effects of zinc on plasma lipoprotein cholesterol concentrations in humans: a meta-analysis of randomised controlled trials. Atherosclerosis. 2010; 210(2):344-52.
46- Saurabh S, Sahoo PK. Lysozyme: an important defence molecule of fish innate immune system. Aquacult Res. 2008;39(3):223-39.