1. Barsanti L, Gualtieri P. Is exploitation of microalgae economically and energetically sustainable? Algal research. 2018;31:107-15.
2. Koletzko B, Agostoni C, Carlson SE, Clandinin T, Hornstra G, Neuringer M, et al. Long chain polyunsaturated fatty acids (LC‐PUFA) and perinatal development. Acta paediatrica. 2001;90(4):460-4.
3. Suzuki H, Hulatt CJ, Wijffels RH, Kiron V. Growth and LC-PUFA production of the cold-adapted microalga Koliella antarctica in photobioreactors. Journal of Applied Phycology. 2019;31(2):981-97.
4. Alishah Aratboni H, Rafiei N, Garcia-Granados R, Alemzadeh A, Morones-Ramírez JR. Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microbial Cell Factories. 2019;18(1):178.
5. Shokravi Z, Shokravi H, Chyuan OH, Lau WJ, Koloor SS, Petrů M, et al. Improving ‘Lipid Productivity’ in Microalgae by Bilateral Enhancement of Biomass and Lipid Contents: A Review. Sustainability. 2020;12(21).
6. Chen B, Wan C, Mehmood MA, Chang J-S, Bai F, Zhao X. Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products–a review. Bioresource technology. 2017;244:1198-206.
7. Althoff T, Mills DJ, Popot JL, Kühlbrandt W. Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. Embo j. 2011;30(22):4652-64.
8. Yates CM, Calder PC, Ed Rainger G. Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease. Pharmacol Ther. 2014;141(3):272-82.
9. Gopalakrishnan V, Ramamurthy D. Dyeing Industry Effluent System as Lipid Production Medium of <i>Neochloris</i> sp. for Biodiesel Feedstock Preparation. BioMed Research International. 2014;2014:529560.
10. Mathieu-Rivet E, Kiefer-Meyer MC, Vanier G, Ovide C, Burel C, Lerouge P, et al. Protein N-glycosylation in eukaryotic microalgae and its impact on the production of nuclear expressed biopharmaceuticals. Front Plant Sci. 2014;5:359.
11. Vitova M, Bisova K, Kawano S, Zachleder V. Accumulation of energy reserves in algae: From cell cycles to biotechnological applications. Biotechnol Adv. 2015;33(6 Pt 2):1204-18.
12. Solovchenko AE. Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses. Russian Journal of Plant Physiology. 2012;59(2):167-76.
13. Fukuda H, Kondo A, Noda H. Biodiesel fuel production by transesterification of oils. J Biosci Bioeng. 2001;92(5):405-16.
14. Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 2008;26(3):126-31.
15. Van Wagenen J, Miller TW, Hobbs S, Hook P, Crowe B, Huesemann M. Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies. 2012;5(3):731-40.
16. Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng. 2009;102(1):100-12.
17. Camacho-Rodríguez J, Cerón-García MC, González-López CV, Fernández-Sevilla JM, Contreras-Gómez A, Molina-Grima E. A low-cost culture medium for the production of Nannochloropsis gaditana biomass optimized for aquaculture. Bioresource technology. 2013;144:57-66.
18. Solovchenko A, Lukyanov A, Solovchenko O, Didi‐Cohen S, Boussiba S, Khozin‐Goldberg I. Interactive effects of salinity, high light, and nitrogen starvation on fatty acid and carotenoid profiles in Nannochloropsis oceanica CCALA 804. European Journal of Lipid Science and Technology. 2014;116(5):635-44.
19. Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Applied microbiology and biotechnology. 2011;90(4):1429-41.
20. Moheimani NR, Borowitzka MA, Isdepsky A, Sing S. Standard methods for measuring growth of algae and their composition. Algae for biofuels and energy: Springer; 2013. p. 265-84.
21. Vijayaraghavareddy P, Adhinarayanreddy V, Vemanna RS, Sreeman S, Makarla U. Quantification of Membrane Damage/Cell Death Using Evan's Blue Staining Technique. Bio-protocol. 2017;7(16):e2519.
22. Ritchie RJ. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynthesis research. 2006;89(1):27-41.
23. Kim CW, Sung MG, Nam K, Moon M, Kwon JH, Yang JW. Effect of monochromatic illumination on lipid accumulation of Nannochloropsis gaditana under continuous cultivation. Bioresour Technol. 2014;159:30-5.
24. Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipides from animal tissues. Journal of biological chemistry. 1957;226(1):497-509.
25. Aksnes A, Opstvedt J. Content of digestible energy in fish feed ingredients determined by the ingredient-substitution method. Aquaculture. 1998;161(1-4):45-53.
26. Metcalfe LD, Schmitz AA, Pelka JR. Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Analytical chemistry. 1966;38(3):514-5.
27. Owens TG, Gallagher JC, Alberte RS. PHOTOSYNTHETIC LIGHT‐HARVESTING FUNCTION OF VIOLAXANTHIN IN NANNOCHLOROPSIS SPP.(EUSTIGMATOPHYCEAE) 1. Journal of Phycology. 1987;23(1):79-85.
28. Boussiba S, Vonshak A, Cohen Z, Avissar Y, Richmond A. Lipid and biomass production by the halotolerant microalga Nannochloropsis salina. Biomass. 1987;12(1):37-47.
29. Kalita N, Baruah G, Goswami RCD, Talukdar J, Kalita MC. Ankistrodesmus falcatus: a promising candidate for lipid production, its biochemical analysis and strategies to enhance lipid productivity. Journal of Microbiology and Biotechnology Research. 2011;1(4):148-57.
30. Mohan SV, Devi MP. Salinity stress induced lipid synthesis to harness biodiesel during dual mode cultivation of mixotrophic microalgae. Bioresource technology. 2014;165:288-94.
31. Guo DS, Ji XJ, Ren LJ, Li GL, Huang H. Improving docosahexaenoic acid production by Schizochytrium sp. using a newly designed high‐oxygen‐supply bioreactor. AIChE Journal. 2017;63(10):4278-86.
32. Richmond A. Handbook of microalgal mass culture (1986): CRC press; 2017.
33. Yang J, Astatkie T, He QS. A comparative study on the effect of unsaturation degree of camelina and canola oils on the optimization of bio-diesel production. Energy Reports. 2016;2:211-7.
34. Pal D, Khozin-Goldberg I, Didi-Cohen S, Solovchenko A, Batushansky A, Kaye Y, et al. Growth, lipid production and metabolic adjustments in the euryhaline eustigmatophyte Nannochloropsis oceanica CCALA 804 in response to osmotic downshift. Applied microbiology and biotechnology. 2013;97(18):8291-306.
35. Kirrolia A, Bishnoi NR, Singh N. Salinity as a factor affecting the physiological and biochemical traits of Scenedesmus quadricauda. Journal of Algal Biomass Utilization. 2011;2(4):28-34.
36. Takagi M, Yoshida T. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. Journal of bioscience and bioengineering. 2006;101(3):223-6.
37. Sharma KK, Schuhmann H, Schenk PM. High Lipid Induction in Microalgae for Biodiesel Production. Energies. 2012;5(5).
38. Zhu L. Microalgal culture strategies for biofuel production: a review. Biofuels, Bioproducts and Biorefining. 2015;9(6):801-14.
39. Renaud SM, Parry DL, Thinh L-V, Kuo C, Padovan A, Sammy N. Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture. Journal of Applied Phycology. 1991;3(1):43-53.
40. Wahidin S, Idris A, Shaleh SRM. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresource technology. 2013;129:7-11.
41. Nzayisenga JC, Farge X, Groll SL, Sellstedt A. Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnology for Biofuels. 2020;13(1):1-8.
42. Ma X-N, Chen T-P, Yang B, Liu J, Chen F. Lipid production from Nannochloropsis. Marine drugs. 2016;14(4):61.
43. Guschina IA, Harwood JL. Lipids and lipid metabolism in eukaryotic algae. Progress in lipid research. 2006;45(2):160-86.
44. Bartley ML, Boeing WJ, Corcoran AA, Holguin FO, Schaub T. Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms. Biomass and Bioenergy. 2013;54:83-8.
45. Huang G, Chen F, Wei D, Zhang X, Chen G. Biodiesel production by microalgal biotechnology. Applied energy. 2010;87(1):38-46.
46. Huete-Ortega M, Okurowska K, Kapoore RV, Johnson MP, Gilmour DJ, Vaidyanathan S. Effect of ammonium and high light intensity on the accumulation of lipids in Nannochloropsis oceanica (CCAP 849/10) and Phaeodactylum tricornutum (CCAP 1055/1). Biotechnology for biofuels. 2018;11(1):1-15.
47. Fakhry EM, El Maghraby DM. Lipid accumulation in response to nitrogen limitation and variation of temperature in Nannochloropsis salina. Botanical studies. 2015;56(1):1-8.
48. Venkata Mohan S, Devi MP. Salinity stress induced lipid synthesis to harness biodiesel during dual mode cultivation of mixotrophic microalgae. Bioresource technology. 2014;165:288-94.
49. Nwoba EG, Parlevliet DA, Laird DW, Alameh K, Moheimani NR. Does growing Nannochloropsis sp. in innovative flat plate photobioreactors result in changes to fatty acid and protein composition? Journal of Applied Phycology. 2020;32(6):3619-29.
50. Hu H, Gao K. Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. Biotechnology letters. 2003;25(5):421-5.