علوم و فنون شیلات

علوم و فنون شیلات

تجمع بافتی آهن و مطالعه هیستولوژی روده کفال خاکستری (Mugil cephalus) با مصرف خوراکی نانوذرات اکسیدآهن

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشگاه دریانوردی و علوم دریایی چابهار
چکیده
تجمع نانوذرات در محیط و آب به دلیل کاربرد وسیع آنها در صنایع، کشاورزی، پزشکی و داروسازی نگرانی روزافزونی را درباره محیط زیست و افزایش مواجهه با نانوذرات در اکوسیستم ها و انسان ایجاد کرده است. ﻧﺎﻧﻮذرات اکسیدآهن ﺑﻪ راﺣﺘﯽ وارد ﺟﺮیﺎن ﺧﻮن شده و در بافت های مختلف تجمع یافته و باعث بروز صدماتی در این بافت ها می شوند. لذا در این پژوهش به بررسی تغییرات بافت روده ماهی کفال خاکستری (M. cephalus) و تجمع بافتی در مواجهه خوراکی با نانوذرات اکسید آهن پرداخته شد. تعداد 110 قطعه ماهی جوان کفال خاکستری پس از 2هفته سازگاری در چهار گروه زمانی 1، 7، 14 و 28 روزه تیماربندی شدند و یک گروه نیز به عنوان شاهد درنظر گرفته شد. کفال ماهیان دوبار در روز نانوذرات اکسیدآهن را به میزان 15 میلی گرم بر کیلوگرم بصورت متصل به غذا دریافت کردند. نتایج نشان داد اگرچه میزان آهن بافتی تنها در گروه 28روزه افزایش معنادار داشت، اما مصرف نانوذرات اکسیدآهن تقریبا در تمام گروهها باعث افزایش تجمع بافتی آهن در روده می گردد. مطالعه بافتی روده نشان دهنده تغییراتی از قبیل افزایش تعداد و اندازه سلولهای جامی، تخریب ساختار ریز پرزها، خونریزی و درجاتی از نکروز بود که شدت و گستردگی تغییرات ایجاد شده در بافت روده با بیشتر شدن زمان مواجهه افزایش یافت. این مشاهدات نشان داد که مصرف نانوذرات اکسیدآهن بر عملکرد روده تأثیر منفی گذاشته و باعث تجمع آهن و بروز صدمات وابسته به زمان می گردد.
کلیدواژه‌ها

موضوعات


[1] Bundschuh M, Filser J, Lüderwald S, McKee MS, Metreveli G, Schaumann GE, Schulz R, Wagner S. Nanoparticles in the environment: where do we come from, where do we go to?. Environmental Sciences Europe. 2018;30(1):1-7.
[2] Garner KL, Keller AA. Emerging patterns for engineered nanomaterials in the environment: a review of fate and toxicity studies. Journal of Nanoparticle Research. 2014;16:1-28.
[3] Iavicoli I, Leso V, Ricciardi W, Hodson LL, Hoover MD. Opportunities and challenges of nanotechnology in the green economy. Environmental health. 2014;13(1):1-11.
[4] Sellers K, Mackay C, Bergeson LL, Clough SR, Hoyt M, Chen J, Henry K, Hamblen J. Nanotechnology and the Environment. CRC press. 2008 Jul 30.
[5] Sudagar M, Mazandarani M, Hosseini SS. The effects of nanoparticles on aquatic histopathology. Journal of Ornamental Aquatics. 2015;2(1):25-30.
[6] Mohammadzadeh P, Jamili S, Mashinchian Moradi A, Matinfar A, Rostami M. A survey on Pb accumulation effects on fish liver and gill tissues of Rutilus rutilus caspius. Journal of Animal Environment. 2011;3(1):59-68.
[7] Koohkan O, Abdi R, Salighehzadeh R, Jaddi Y. Histopathological study on sub-acute toxicity of paraquat on liver of Benny fish fingerling (Barbush sharpeyi). Journal of Comparative Pathobiology. 2014;144(11):1167-1172.
[8] Kaur R, Kaur M, Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovascular diabetology. 2018;17(1):1-7.
[9] Dane H, ŞİŞMAN T. A histopathological study on the freshwater fish species chub (Squalius cephalus) in the Karasu River, Turkey. Turkish Journal of Zoology. 2017;41(1):1-11.
[10] Vidya PV, Chitra KC. Irreversible histopathological modifications induced by iron oxide nanoparticles in the fish, Oreochromis mossambicus (Peters, 1852). In Biological Forum–An International Journal. 2019;11(1):1-6.
[11] Jalali K, Abtahi B, Samiee K, Sarafrazi ardakani M. Investigation of influence of size (total length) and sex on accumulation of Pb in liver and muscle tissues of Platycephalus indicus fish in Musa estuary (northwest of Persian Gulf). Journal of Aquatic Ecology. 2013;2 (4):17-11.
[12] Mansouri B, Maleki A, Johari SA, Shahmoradi B, Mohammadi E, Davari B. Histopathological effects of copper oxide nanoparticles on the gill and intestine of common carp (Cyprinus carpio) in the presence of titanium dioxide nanoparticles. Chemistry and Ecology. 2017;33(4):295-308.
[13] Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. biomaterials. 2005;26(18):3995-4021.
[14] Singh N, Jenkins GJ, Asadi R, Doak SH. Potential toxicity of super paramagnetic iron oxide nanoparticles (SPION). Nano reviews. 2010;1(1):53-58.
[15] Federici G, Shaw BJ, Handy RD. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquatic toxicology. 2007;84(4):415-30.
[16] Kaya H, Aydın F, Gürkan M, Yılmaz S, Ates M, Demir V, Arslan Z. A comparative toxicity study between small and large size zinc oxide nanoparticles in tilapia (Oreochromis niloticus): Organ pathologies, osmoregulatory responses and immunological parameters. Chemosphere. 2016;144:571-582.
[17] Johari SA, Kalbassi MR, Yu IJ, Lee JH. Chronic effect of waterborne silver nanoparticles on rainbow trout (Oncorhynchus mykiss): histopathology and bioaccumulation. Comparative Clinical Pathology. 2015;24:995-1007.
[18] Wilson JM, Castro LF. Morphological diversity of the gastrointestinal tract in fishes. Fish physiology. 2010;30:1-55.
[19] Sahraei H, Hedayati SAA, Marivani L, Rezaei K. Investigating changes in Common Carp Cyprinus carpio Linnaeus, 1758 muscle and liver enzymes Fed with iron and zinc oxide nanoparticles. Journal of Applied Ichthyological Research. 2017;5(2):79-96
[20] Hajirahimi A, Farokhi F, Tokmehchi A. Effects of Iron oxide and zinc nanoparticles on the liver and muscles in rainbow trout (Oncorhynchus mykiss). Journal of Animal Research (Iranian Journal of Biology). 2015;28(3):293-306.
[21] Gürkan M, Gürkan SE, Yılmaz S, Ateş M. Comparative toxicity of Alpha and Gamma iron oxide nanoparticles in Rainbow Trout: Histopathology, hematology, accumulation, and oxidative stress. Water, Air, & Soil Pollution. 2021;232:1-4.
[22] Ostaszewska T, Chojnacki M, Kamaszewski M, Sawosz-Chwalibóg E. Histopathological effects of silver and copper nanoparticles on the epidermis, gills, and liver of Siberian sturgeon. Environmental science and pollution research. 2016;23:1621-1633.
[23] Sayadi MH, Mansouri B, Shahri E, Tyler CR, Shekari H, Kharkan J. Exposure effects of iron oxide nanoparticles and iron salts in blackfish (Capoeta fusca): Acute toxicity, bioaccumulation, depuration, and tissue histopathology. Chemosphere. 2020;247:125900.
[24] Bury NR, Grosell M, Wood CM, Hogstrand C, Wilson RW, Rankin JC, Busk M, Lecklin T, Jensen FB. Intestinal iron uptake in the European flounder (Platichthys flesus). Journal of Experimental Biology. 2001;204(21):3779-87.
[25] Suganthi P, Murali M, Sadiq Bukhari A, Syed Mohamed HE, Basu H, Singhal RK. Behavioural and Histological variations in Oreochromis mossambicus after exposure to ZnO Nanoparticles. Int J Appl Res. 2015;1(8):524-31.
[26] Carrassón M, Grau A, Dopazo LR, Crespo S. A histological, histochemical and ultrastructural study of the digestive tract of Dentex dentex (Pisces, Sparidae). Histology and histopathology. 2006; 21:579–593.
[27] Faccioli CK, Chedid RA, Mori RH, do Amaral AC, Vicentini IB, Vicentini CA. Ultrastructure of the digestive tract in neotropical carnivorous catfish Hemisorubim platyrhynchos (Valenciennes, 1840)(Siluriformes, Pimelodidae). Scanning. 2016;38(4):336-43.
[28] Handy RD, Henry TB, Scown TM, Johnston BD, Tyler CR. Manufactured nanoparticles: their uptake and effects on fish—a mechanistic analysis. Ecotoxicology. 2008;17:396-409.
[29] Geppert M, Himly M. Iron oxide nanoparticles in bioimaging–an immune perspective. Frontiers in Immunology. 2021;12:688-927.