1. David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clinical microbiology reviews. 2010;23(3):616-87.
2. Allocati N, Masulli M, Alexeyev MF, Di Ilio C. Escherichia coli in Europe: an overview. International journal of environmental research and public health. 2013;10(12):6235-54.
3. Omuse G, Kabera B, Revathi G. Low prevalence of methicillin resistant Staphylococcus aureus as determined by an automated identification system in two private hospitals in Nairobi, Kenya: a cross sectional study. BMC infectious diseases. 2014;14(1):1-6.
4. Kocaoglu O, Carlson EE. Profiling of β-lactam selectivity for penicillin-binding proteins in Escherichia coli strain DC2. Antimicrobial Agents and Chemotherapy. 2015;59(5):2785-90.
5. Li M, Diep BA, Villaruz AE, Braughton KR, Jiang X, DeLeo FR, et al. Evolution of virulence in epidemic community-associated methicillin-resistant Staphylococcus aureus. Proceedings of the National Academy of Sciences. 2009;106(14):5883-8.
6. Paulsen IT, Brown MH, Skurray RA. Proton-dependent multidrug efflux systems. Microbiological reviews. 1996;60(4):575-608.
7. Mohire NC, Yadav AV. Chitosan-based polyherbal toothpaste: As novel oral hygiene product. Indian Journal of Dental Research. 2010;21(3):380.
8. Cheba BA. Chitin and chitosan: marine biopolymers with unique properties and versatile applications. Global Journal of Biotechnology & Biochemistry. 2011;6(3):149-53.
9. Levin DE. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics. 2011;189(4):1145-75.
10. García Rl, Bermejo C, Grau C, Pérez R, Rodríguez-Peña JM, Francois J, et al. The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway. Journal of Biological Chemistry. 2004;279(15):15183-95.
11. Brown S, Santa Maria Jr JP, Walker S. Wall teichoic acids of gram-positive bacteria. Annual review of microbiology. 2013;67.
12. Krajewska B, Wydro P, Jańczyk A. Probing the modes of antibacterial activity of chitosan. Effects of pH and molecular weight on chitosan interactions with membrane lipids in Langmuir films. Biomacromolecules. 2011;12(11):4144-52.
13. Ito T, Katayama Y, Asada K, Mori N, Tsutsumimoto K, Tiensasitorn C, et al. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrobial agents and chemotherapy. 2001;45(5):1323-36.
14. Jansen W, Beitsma M, Koeman C, Van Wamel W, Verhoef J, Fluit A. Novel mobile variants of staphylococcal cassette chromosome mec in Staphylococcus aureus. Antimicrobial agents and chemotherapy. 2006;50(6):2072-8.
15. Alishahi A, Mirvaghefi A, Tehrani M, Farahmand H, Shojaosadati S, Dorkoosh F, et al. Enhancement and characterization of chitosan extraction from the wastes of shrimp packaging plants. Journal of Polymers and the Environment. 2011;19(3):776-83.
16. Masarudin MJ, Cutts SM, Evison BJ, Phillips DR, Pigram PJ. Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [14C]-doxorubicin. Nanotechnology, science and applications. 2015;8:67.
17. Bobu E, Nicu R, Lupei M, Ciolacu F, Desbrieres J. Synthesis and characterization of n-alkyl chitosan for papermaking applications. Cellulose Chemistry and Technology. 2011;45(9):619.
18. Tiina M, Sandholm M. Antibacterial effect of the glucose oxidase-glucose system on food-poisoning organisms. International Journal of Food Microbiology. 1989;8(2):165-74.
19. Wayne P. Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing. 2011.
20. Weinstein MP, Lewis JS. The clinical and laboratory standards institute subcommittee on antimicrobial susceptibility testing: background, organization, functions, and processes. Journal of clinical microbiology. 2020;58(3):e01864-19.
21. Skerlavaj B, Romeo D, Gennaro R. Rapid membrane permeabilization and inhibition of vital functions of gram-negative bacteria by bactenecins. Infection and immunity. 1990;58(11):3724-30.
22. Hekmat A, Saboury AA, Divsalar A, Seyedarabi A. Structural effects of TiO2 nanoparticles and doxorubicin on DNA and their antiproliferative roles in T47D and MCF7 cells. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 2013;13(6):932-51.
23. Miao J, Zhou J, Liu G, Chen F, Chen Y, Gao X, et al. Membrane disruption and DNA binding of Staphylococcus aureus cell induced by a novel antimicrobial peptide produced by Lactobacillus paracasei subsp. tolerans FX-6. Food Control. 2016;59:609-13.
24. Goy RC, Morais ST, Assis OB. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Revista Brasileira de Farmacognosia. 2016;26:122-7.
25. Ma Z, Garrido-Maestu A, Jeong KC. Application, mode of action, and in vivo activity of chitosan and its micro-and nanoparticles as antimicrobial agents: A review. Carbohydrate polymers. 2017;176:257-65.
26. Garcia LGS, de Melo Guedes GM, Fonseca XMQC, Pereira-Neto WA, Castelo-Branco DSCM, Sidrim JJC, et al. Antifungal activity of different molecular weight chitosans against planktonic cells and biofilm of Sporothrix brasiliensis. International Journal of Biological Macromolecules. 2020;143:341-8.
27. Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. International journal of food microbiology. 2010;144(1):51-63.
28. Liu N, Chen X-G, Park H-J, Liu C-G, Liu C-S, Meng X-H, et al. Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydrate polymers. 2006;64(1):60-5.
29. Rozman NAS, Tong WY, Leong CR, Tan WN, Hasanolbasori MA, Abdullah SZ. Potential antimicrobial applications of chitosan nanoparticles (ChNP). 2019.
30. Tsai G-J, Su W-H. Antibacterial activity of shrimp chitosan against Escherichia coli. Journal of food protection. 1999;62(3):239-43.
31. Ali SW, Rajendran S, Joshi M. Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydrate Polymers. 2011;83(2):438-46.
32. Costa E, Silva S, Vicente S, Neto C, Castro P, Veiga M, et al. Chitosan nanoparticles as alternative anti-staphylococci agents: Bactericidal, antibiofilm and antiadhesive effects. Materials Science and Engineering: C. 2017;79:221-6.
33. Madigan MT, Martinko JM, Parker J. Brock biology of microorganisms: Pearson Prentice Hall Upper Saddle River, NJ; 2006.
34. Papineau AM, Hoover DG, Knorr D, Farkas DF. Antimicrobial effect of water‐soluble chitosans with high hydrostatic pressure. Food Biotechnology. 1991;5(1):45-57.
35. Young DH, Köhle H, Kauss H. Effect of chitosan on membrane permeability of suspension-cultured Glycine max and Phaseolus vulgaris cells. Plant physiology. 1982;70(5):1449-54.
36. Helander I, Nurmiaho-Lassila E-L, Ahvenainen R, Rhoades J, Roller S. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. International journal of food microbiology. 2001;71(2-3):235-44.
37. Chen S, Wu G, Zeng H. Preparation of high antimicrobial activity thiourea chitosan–Ag+ complex. Carbohydrate Polymers. 2005;60(1):33-8.
38. da Silva Jr A, Teschke O. Effects of the antimicrobial peptide PGLa on live Escherichia coli. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2003;1643(1-3):95-103.
39. Mecke A, Lee D-K, Ramamoorthy A, Orr BG, Holl MMB. Membrane thinning due to antimicrobial peptide binding: an atomic force microscopy study of MSI-78 in lipid bilayers. Biophysical journal. 2005;89(6):4043-50.
40. Potara M, Jakab E, Damert A, Popescu O, Canpean V, Astilean S. Synergistic antibacterial activity of chitosan–silver nanocomposites on Staphylococcus aureus. Nanotechnology. 2011;22(13):135101.