علوم و فنون شیلات

علوم و فنون شیلات

بررسی اثر غنی سازی جیره با پروبیوتیک Bacillus subtilis (IS02) بر بقاء، شاخص های بیوشیمیایی و بافت شناسی بچه ماهی نورس کپور دریایی، Cyprinus carpio، در مواجهه با تنش اسمزی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 سازمان تحقیقات، آموزش و ترویج کشاورزی، موسسه تحقیقات علوم شیلاتی کشور، مرکز تحقیقات ذخایر آبزیان آبهای داخلی، گرگان
2 گروه شیلات، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
3 موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران
4 گروه بهداشت و بیماری های آبزیان، دانشکده دامپزشکی، دانشگاه‌ تهران، تهران، ایران
چکیده
این تحقیق به منظور بررسی اثر افزودن Bacillus subtilis (IS02) به جیره­غذایی بر بقاء، شاخص­های بیوشیمیایی و بافت­شناسی بچه­ماهی نورس کپور دریایی، Cyprinus carpio، در مواجهه با تنش شوری انجام شد. بچه­ماهی کپور (میانگین 1/1 گرم) به مدت 15 روز با جیره­های غذایی حاوی صفر (شاهد)، 108 × 5/2 (پرو-8) و 109 × 5/2 (پرو-9) cfu/g پروبیوتیک تغذیه و سپس به طور مستقیم به آب لب­شور منتقل و پس از 3 و 10 روز نمونه­گیری شدند. بقاء در همه تیمارها بالای 96 درصد بود. مقدار رطوبت و پتاسیم بدن تحت تاثیر زمان نمونه برداری بود به این ترتیب که مقدار رطوبت پس از تنش شوری به طور معنی­داری کاهش یافت ولی مقدار پتاسیم به طور معنی­داری افزایش یافت. سدیم بدن در تیمار پرو-8 در خلال تنش تغییر معنی­دار نداشت و تیمارهای پروبیوتیک مقدار کلراید کمتری نسبت به شاهد قبل و بعد از تنش شوری داشتند. افزودن پروبیوتیک به جیره باعث افزایش فعالیت گلوتاتیون ردوکتاز، گلوتاتیون پراکسیداز، و غلظت گلوتاتیون احیائی شد در حالی که غلظت مالون دی­آلدهید را کاهش داد. پروبیوتیک باعث تجمع گلبول­های سفید در بافت کلیه شد. آسیب بافتی چشمگیر و مهمی در مقایسه با شاهد در آبشش و کلیه بعد از تنش شوری مشاهده نشد. این تحقیق نشان می­دهد که کپور دریایی نورس توانایی تحمل انتقال مستقیم به آب دریای خزر را بدون غنی­سازی جیره با پروبیوتیک دارد. ولی، پروبیوتیک باعث تحریک ایمنی در کلیه، تقویت تنظیم یونی و افزایش ظرفیت آنتی اکسیدانی در ماهی می شود که می تواند اثرات مفیدی در شرایط میدانی داشته باشد.
کلیدواژه‌ها

موضوعات


1. Bandani G, Larijani M, Frazli H, Daryanabard G. Analyzing the trend of catch rate and reconstruction of carp and roach in the Iranian waters of Caspian Sea. Utilization and cultivation of aquatics. 2020;9(2):45-56.
2. Gholami F, Tajari M, Yosef NS, Shahkar E, Kolangi Miandare H, Azimi A. Examination of some biochemical factors of blood serum in common carp (Cyprinus carpio) fingerlings at different levels of salinity. Journal of Fisheries. 2013;7:37-44 (In Persian).
3. Hoseini SM, Hosseini SA. Effect of dietary l-tryptophan on osmotic stress tolerance in common carp, Cyprinus carpio, juveniles. Fish Physiol Biochem. 2010;36(4):1061-7.
4. Mohiseni M, Banaee M, Nematdust haghi B, Farabi SMV. Effects of feed deprivation on chloride cell development in kuttum fish (Rutilus frisii kuttum) during sea water challenge. Journal of aquatic ecology. 2016;5(4):88-97.
5. Baldisserotto B. Fish osmoregulation: CRC Press; 2019.
6. Ghelichpour M, Taheri Mirghaed A, Zargar A. The response of lufenuron‐ and flonicamid‐exposed Cyprinus carpio to saltwater challenge: Study on ion‐regulation and stress genes expression and plasma antioxidant characteristics. Aquac Res. 2020;51(12):4829-37.
7. Huang M, Yang X, Zhou Y, Ge J, Davis DA, Dong Y, et al. Growth, serum biochemical parameters, salinity tolerance and antioxidant enzyme activity of rainbow trout (Oncorhynchus mykiss) in response to dietary taurine levels. Marine life science & technology. 2021:1-14.
8. Caxico Vieira CAS, Vieira JS, Bastos MS, Zancanela V, Barbosa LT, Gasparino E, et al. Expression of genes related to antioxidant activity in Nile tilapia kept under salinity stress and fed diets containing different levels of vitamin C. Journal of toxicology and environmental health, part A. 2018;81(1-3):20-30.
9. Jalali MA, Hosseini SA, Imanpour MR. Effect of vitamin E and highly unsaturated fatty acid‐enriched Artemia urmiana on growth performance, survival and stress resistance of Beluga (Huso huso) larvae. Aquac Res. 2008;39(12):1286-91.
10. Abdel-Tawwab M, Monier MN. Stimulatory effect of dietary taurine on growth performance, digestive enzymes activity, antioxidant capacity, and tolerance of common carp, Cyprinus carpio L., fry to salinity stress. Fish Physiol Biochem. 2018;44(2):639-49.
11. Moghadam H, Sourinejad I, Johari SA. Dietary turmeric, curcumin and nanoencapsulated curcumin can differently fight against salinity stress in Pacific white shrimp Penaeus vannamei Boone, 1931. Aquac Res. 2022;53(8):3127-39.
12. Hoseinifar SH, Yousefi S, Van Doan H, Ashouri G, Gioacchini G, Maradonna F, et al. Oxidative stress and antioxidant defense in fish: the implications of probiotic, prebiotic, and synbiotics. Reviews in fisheries science & aquaculture. 2021;29(2):198-217.
13. Gu Y, Xu X, Wu Y, Niu T, Liu Y, Li J, et al. Advances and prospects of Bacillus subtilis cellular factories: from rational design to industrial applications. Metabolic engineering. 2018;50:109-21.
14. Olmos J, Acosta M, Mendoza G, Pitones V. Bacillus subtilis, an ideal probiotic bacterium to shrimp and fish aquaculture that increase feed digestibility, prevent microbial diseases, and avoid water pollution. Arch Microbiol. 2020;202:427-35.
15. Nicholson W. Ubiquity, longevity, and ecological roles of Bacillus spores. In: Ricca E, Henriques A, Cutting S, editors. Bacterial spore formers: probiotics and emerging applications. Norfolk, UK: Horizons Bioscience; 2004. p. 1-15.
16. Wang L, Ge C, Wang J, Dai J, Zhang P, Li Y. Effects of different combinations of Bacillus on immunity and antioxidant activities in common carp. Aquac Int. 2017;25(6):2091-9.
17. Liu J, Cheng Y, Lu Y, Xia C, Wang N, Li Y. Bacillus subtilis spores as an adjuvant to enhance the protection efficacy of the SVCV subunit vaccine (SVCV‐M protein) in German mirror carp (Cyprirnus Carpio Songpa Linnaeus Mirror). Aquac Res. 2021;52(10):4648-60.
18. He S, Liu W, Zhou Z, Mao W, Ren P. Evaluation of probiotic strain Bacillus subtilis C-3102 as a feed supplement for koi carp (Cyprinus carpio). Aquaculture research & development. 2011;1:S1:005.
19. Cao H, Yu R, Zhang Y, Hu B, Jian S, Wen C, et al. Effects of dietary supplementation with β-glucan and Bacillus subtilis on growth, fillet quality, immune capacity, and antioxidant status of Pengze crucian carp (Carassius auratus var. Pengze). Aquaculture. 2019;508:106-12.
20. Yin Y, Zhang P, Yue X, Du X, Li W, Yin Y, et al. Effect of sub-chronic exposure to lead (Pb) and Bacillus subtilis on Carassius auratus gibelio: Bioaccumulation, antioxidant responses and immune responses. Ecotoxicol Environ Saf. 2018;161:755-62.
21. Tang Y, Han L, Chen X, Xie M, Kong W, Wu Z. Dietary supplementation of probiotic Bacillus subtilis affects antioxidant defenses and immune response in grass carp under Aeromonas hydrophila challenge. Probiotics and antimicrobial proteins. 2019;11(2):545-58.
22. Wang Y, Wang Q, Xing K, Jiang P, Wang J. Dietary cinnamaldehyde and Bacillus subtilis improve growth performance, digestive enzyme activity, and antioxidant capability and shape intestinal microbiota in tongue sole, Cynoglossus semilaevis. Aquaculture. 2021;531:735798.
23. Tang S, Liu S, Zhang J, Zhou L, Wang X, Zhao Q, et al. Relief of hypersaline stress in Nile tilapia Oreochromis niloticus by dietary supplementation of a host-derived Bacillus subtilis strain. Aquaculture. 2020;528:735542.
24. Mirbakhsh M, Ghaednia B, Tabatabaee Bafroee AS. An in vivo and in vitro assessment of the probiotic potentials of indigenous halotolerant bacteria on growth performance and digestive enzymes of white leg shrimp (Litopenaeus vannamei) in high-salinity waters. Aquacult Nutr. 2022;2022:2704224.
25. Mirbakhsh M, Mahjoub M, Afsharnasab M, Kakoolaki S, Sayyadi M, Hosseinzadeh S. Effects of Bacillus subtilis on the water quality, stress tolerance, digestive enzymes, growth performance, immune gene expression, and disease resistance of white shrimp (Litopenaeus vannamei) during the early hatchery period. Aquac Int. 2021;29(6):2489-506.
26. Salehi M, Bagheri D, Sotoudeh E, Ghasemi A, Mozanzadeh MT. The combined effects of propionic acid and a mixture of Bacillus spp. probiotic in a plant protein–rich diet on growth, digestive enzyme activities, antioxidant capacity, and immune-related genes mRNA transcript abundance in Lates calcarifer fry. Probiotics and antimicrobial proteins. 2023;15(3):655-67.
27. AOAC. Official methods of analysis of the Association of Official Analytical Chemists. Association of Official Analytical Chemists, Washington, DC, USA. 2005.
28. Reda RM, El-Hady MA, Selim KM, El-Sayed HM. Comparative study of three predominant gut Bacillus strains and a commercial B. amyloliquefaciens as probiotics on the performance of Clarias gariepinus. Fish Shellfish Immunol. 2018;80:416-25.
29. Eslamloo K, Akhavan SR, Henry MA. Effects of dietary administration of Bacillus probiotics on the non-specific immune responses of tinfoil barb, Barbonymus schwanenfeldii (Actinopterygii: Cypriniformes: Cyprinidae). Acta ichthyologica et piscatoria. 2013;43(3):211-8.
30. Hoseini SM, Khosraviani K, Hosseinpour Delavar F, Arghideh M, Zavvar F, Hoseinifar SH, et al. Hepatic transcriptomic and histopathological responses of common carp, Cyprinus carpio, to copper and microplastic exposure. Mar Pollut Bull. 2022;175:113401.
31. Grant A, Gardner M, Hanson L, Farrell A, Brauner C. Early life stage salinity tolerance of wild and hatchery‐reared juvenile pink salmon Oncorhynchus gorbuscha. J Fish Biol. 2010;77(6):1282-92.
32. Grant A, Gardner M, Nendick L, Sackville M, Farrell A, Brauner C. Growth and ionoregulatory ontogeny of wild and hatchery-raised juvenile pink salmon (Oncorhynchus gorbuscha). Can J Zool. 2009;87(3):221-8.
33. EPA-METHOD. 9250 chloride (colorimetric, automated ferricyanide AAI. Available at: https://www.epa.gov/sites/default/files/2015-12/documents/9250.pdf. EPA. 2015.
34. Wu SM, Jong K, Kuo S. Effects of copper sulfate on ion balance and growth in tilapia larvae (Oreochromis mossambicus). Arch Environ Contam Toxicol. 2003;45:357-63.
35. Lionetto M, Caricato R, Giordano M, Pascariello M, Marinosci L, Schettino T. Integrated use of biomarkers (acetylcholinesterase and antioxidant enzymes activities) in Mytilus galloprovincialis and Mullus barbatus in an Italian coastal marine area. Mar Pollut Bull. 2003;46(3):324-30.
36. Altinok I, Grizzle JM. Effects of low salinities on oxygen consumption of selected euryhaline and stenohaline freshwater fish. J World Aquac Soc. 2003;34(1):113-7.
37. Van der Linden A, Vanaudenhove M, Verhoye M, De Boeck G, Blust R. Osmoregulation of the common carp (Cyprinus carpio) when exposed to an osmotic challenge assessed in-vivo and non-invasively by diffusion-and T2-weighted magnetic resonance imaging. Comparative biochemistry and physiology part A: Molecular & integrative physiology. 1999;124(3):343-52.
38. Imanpoor MR, Roohi Z, Salaghi Z, Beykzadeh A, Davoudipoor A. Effect of Primalac probiotic on growth indices, blood biochemical parameters, survival and resistance to salinity stress in Cyprinus carpio fingerlings. Journal of fisheries science and technology. 2015;4(3):17-28.
39. Roohi Z, Imanpoor MR, Jafari V, Taghizadeh V. The effect of salinity stress on survival, biochemical and blood parameters in fingerling Cyprinus carpio fingerling fed with herbal supplement of Carum carvi. Nova biologica reperta. 2017;4(1):48-55.
40. Hosseini SA, Hoseini SM. Effect of acute crowding stress on subsequent osmotic challenge and recovery in juvenile common carp Cyprinus carpio (Linnaeus). Comp Clin Path. 2012;21(5):583-8.
41. Hoseinifar SH, Roosta Z, Hajimoradloo A, Vakili F. The effects of Lactobacillus acidophilus as feed supplement on skin mucosal immune parameters, intestinal microbiota, stress resistance and growth performance of black swordtail (Xiphophorus helleri). Fish Shellfish Immunol. 2015;42(2):533-8.
42. Imanpoor MR, Roohi Z. Influence of primalac probiotic on growth performance, blood biochemical parameters, survival and stress resistance in the Caspian roach (Rutilus rutilus) fry. Turkish journal of fisheries and aquatic sciences. 2015;15(4):917-22.
43. Shukry M, Abd El-Kader MF, Hendam BM, Dawood MAO, Farrag FA, Aboelenin SM, et al. Dietary Aspergillus oryzae modulates serum biochemical indices, immune responses, oxidative stress, and transcription of HSP70 and cytokine genes in Nile tilapia exposed to salinity stress. Animals. 2021;11(6):1621.
44. Azimirad M, Meshkini S, Ahmadifard N, Hoseinifar SH. The effects of feeding with synbiotic (Pediococcus acidilactici and fructooligosaccharide) enriched adult Artemia on skin mucus immune responses, stress resistance, intestinal microbiota and performance of angelfish (Pterophyllum scalare). Fish Shellfish Immunol. 2016;54:516-22.
45. Lu Y, Zhang Y, Zhang P, Liu J, Wang B, Bu X, et al. Effects of dietary supplementation with Bacillus subtilis on immune, antioxidant, and histopathological parameters of Carassius auratus gibelio juveniles exposed to acute saline-alkaline conditions. Aquac Int. 2022;30(5):2295-310.
46. Mohapatra S, Chakraborty T, Prusty AK, Kumar K, Pani Prasad K, Mohanta KN. Fenvalerate induced stress mitigation by dietary supplementation of multispecies probiotic mixture in a tropical freshwater fish, Labeo rohita (Hamilton). Pestic Biochem Physiol. 2012;104(1):28-37.
47. Tehrani F, Shirazi H, Kazempoor R. Effect of lethal exposure of lead acetate on histopathology of gills of probiotic-treated zebra fish (Danio rerio). Journal of comparative pathobiology. 2020;17(1):3033-44.
48. Pirarat N, Kobayashi T, Katagiri T, Maita M, Endo M. Protective effects and mechanisms of a probiotic bacterium Lactobacillus rhamnosus against experimental Edwardsiella tarda infection in tilapia (Oreochromis niloticus). Vet Immunol Immunopathol. 2006;113(3):339-47.
49. Bunnoy A, Na-Nakorn U, Srisapoome P. Probiotic effects of a novel strain, Acinetobacter KU011TH, on the growth performance, immune responses, and resistance against Aeromonas hydrophila of bighead catfish (Clarias macrocephalus Günther, 1864). Microorganisms. 2019;7(12):613.
50. Ali A, Azom MG, Sarker BS, Rani H, Alam MS, Islam MS. Repercussion of salinity on hematological parameters and tissue morphology of gill and kidney at early life of tilapia. Aquaculture and fisheries. 2022.
51. Tuzhilkin VS, Katunin DN, Nalbandov YR. Natural chemistry of Caspian Sea waters. In: Kostianoy AG, Kosarev AN, editors. The Caspian Sea environment. Berlin, Heidelberg: Springer Berlin Heidelberg; 2005. p. 83-108.
52. Katoh F, Tresguerres M, Lee KM, Kaneko T, Aida K, Goss GG. Cloning of rainbow trout SLC26A1: involvement in renal sulfate secretion. American journal of physiology-regulatory, integrative and comparative physiology. 2006;290(5):R1468-R78.
53. Deng Q, Huttenlocher A. Leukocyte migration from a fish eye's view. J Cell Sci. 2012;125(17):3949-56.
54. Cerezuela R, Fumanal M, Tapia-Paniagua ST, Meseguer J, Moriñigo MÁ, Esteban MÁ. Histological alterations and microbial ecology of the intestine in gilthead seabream (Sparus aurata L.) fed dietary probiotics and microalgae. Cell Tissue Res. 2012;350(3):477-89.
55. Gisbert E, Castillo M, Skalli A, Andree KB, Badiola I. Bacillus cereus var. toyoi promotes growth, affects the histological organization and microbiota of the intestinal mucosa in rainbow trout fingerlings. J Anim Sci. 2013;91(6):2766-74.
56. Ramos MA, Gonçalves JFM, Costas B, Batista S, Lochmann R, Pires MA, et al. Commercial Bacillus probiotic supplementation of rainbow trout (Oncorhynchys mykiss) and brown trout (Salmo trutta): growth, immune responses and intestinal morphology. Aquac Res. 2017;48(5):2538-49.
57. Xie S, Tian L, Niu J, Liang G, Liu Y. Effect of N-acetyl cysteine and glycine supplementation on growth performance, glutathione synthesis, and antioxidative ability of grass carp, Ctenopharyngodon idella. Fish Physiol Biochem. 2017;43(4):1011-20.
58. Pastore A, Piemonte F, Locatelli M, Lo Russo A, Gaeta LM, Tozzi G, et al. Determination of blood total, reduced, and oxidized glutathione in pediatric subjects. Clin Chem. 2001;47(8):1467-9.
59. Galano A, Alvarez-Idaboy JR. Glutathione: mechanism and kinetics of its non-enzymatic defense action against free radicals. Rsc Advances. 2011;1(9):1763-71.
60. Tossounian M-A, Baczynska M, Dalton W, Peak-Chew SY, Undzenas K, Korza G, et al. Bacillus subtilis YtpP and thioredoxin A are new players in the coenzyme-A-mediated defense mechanism against cellular stress. Antioxidants. 2023;12(4):938.