1- Collins SA, Øverland M, Skrede A, Drew MD. Effect of plant protein sources on growth rate in salmonids: Meta-analysis of dietary inclusion of soybean, pea and canola/rapeseed meals and protein concentrates. Aquaculture. 2013; 400: 85-100.
2- Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, Forster I, Gatlin DM, Goldburg RJ, Hua K, Nichols PD. Feeding aquaculture in an era of finite resources. Proceedings of the National Academy of Sciences. 2009; 106: 15103-15110.
3- Barreto-Curiel F, Focken U, D'Abramo LR, Mata-Sotres J, Viana MT. Assessment of amino acid requirements for Totoaba macdonaldi at different levels of protein using stable isotopes and a non-digestible protein source as a filler. Aquaculture. 2019; 503: 550-561.
4- Kwasek K, Wojno M, Iannini F, McCracken VJ, Molinari GS, Terova G. Nutritional programming improves dietary plant protein utilization in zebrafish Danio rerio. PloS one. 2020; 15: e0225917.
5- Gatlin III DM, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW, Herman E, Hu G, Krogdahl Å, Nelson R, Overturf K. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquaculture research. 2007; 38: 551-79.
6- Barrows FT, Bellis D, Krogdahl Å, Silverstein JT, Herman EM, Sealey WM, Rust MB, Gatlin III DM. Report of the plant products in aquafeed strategic planning workshop: an integrated, interdisciplinary research roadmap for increasing utilization of plant feedstuffs in diets for carnivorous fish. Reviews in Fisheries Science. 2008; 16: 449-55.
7- Egerton S, Wan A, Murphy K, Collins F, Ahern G, Sugrue I, Busca K, Egan F, Muller N, Whooley J, McGinnity P. Replacing fishmeal with plant protein in Atlantic salmon (Salmo salar) diets by supplementation with fish protein hydrolysate. Scientific reports. 2020; 10: 4194.
8- Ustaoglu S, Rennert B. The apparent nutrient digestibility of diets containing fish meal or isolated soy protein in sterlet (Acipenser ruthenus). International Review of Hydrobiology: A Journal Covering all Aspects of Limnology and Marine Biology. 2002; 87: 577-84.
9- Lund I, Skov PV, Hansen BW. Dietary supplementation of essential fatty acids in larval pikeperch (Sander lucioperca); short and long term effects on stress tolerance and metabolic physiology. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2012; 162: 340-8.
10- Kemski M, Wick M, Dabrowski K. Nutritional programming effects on growth and reproduction of broodstock and embryonic development of progeny in yellow perch (Perca flavescens) fed soybean meal-based diets. Aquaculture. 2018; 497: 452-61.
11- Lucas A. Programming by early nutrition: an experimental approach. The Journal of nutrition. 1998; 128: 401-6.
12- Fernández-Palacios H, Norberg B, Izquierdo M, Hamre K. Larval Fish Nutrition: Effects of broodstock diet on eggs and larvae. Oxford; 2011: 151-81.
13- Sinclair KD, Rutherford KM, Wallace JM, Brameld JM, Stöger R, Alberio R, Sweetman D, Gardner DS, Perry VE, Adam CL, Ashworth CJ. Epigenetics and developmental programming of welfare and production traits in farm animals. Reproduction, Fertility and Development. 2016; 28: 1443-78.
14- Gisbert E, Williot P. Larval behaviour and effect of the timing of initial feeding on growth and survival of Siberian sturgeon (Acipenser baeri) larvae under small scale hatchery production. Aquaculture. 1997; 156: 63-6.
15- Lazzarotto V, Corraze G, Larroquet L, Mazurais D, Médale F. Does broodstock nutritional history affect the response of progeny to different first-feeding diets? A whole-body transcriptomic study of rainbow trout alevins. British Journal of Nutrition. 2016; 115: 2079-92.
16- Rocha F, Dias J, Geurden I, Dinis MT, Panserat S, Engrola S. Dietary glucose stimulus at larval stage modifies the carbohydrate metabolic pathway in gilthead seabream (Sparus aurata) juveniles: an in vivo approach using 14C-starch. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2016; 201: 189-99.
17- Vagner M, Infante JZ, Robin JH, Person-Le Ruyet J. Is it possible to influence European sea bass (Dicentrarchus labrax) juvenile metabolism by a nutritional conditioning during larval stage?. Aquaculture. 2007; 267: 165-74.
18- Vagner M, Robin JH, Zambonino-Infante JL, Tocher DR, Person-Le Ruyet J. Ontogenic effects of early feeding of sea bass (Dicentrarchus labrax) larvae with a range of dietary n-3 highly unsaturated fatty acid levels on the functioning of polyunsaturated fatty acid desaturation pathways. British journal of nutrition. 2009; 101: 1452-62.
19- Geurden I, Aramendi M, Zambonino-Infante J, Panserat S. Early feeding of carnivorous rainbow trout (Oncorhynchus mykiss) with a hyperglucidic diet during a short period: effect on dietary glucose utilization in juveniles. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2007; 292: 2275-83.
20- Izquierdo MS, Turkmen SE, Montero D, Zamorano MJ, Afonso JM, Karalazos V, Fernández-Palacios H. Nutritional programming through broodstock diets to improve utilization of very low fishmeal and fish oil diets in gilthead sea bream. Aquaculture. 2015; 449: 18-26.
21- Perera E, Yúfera M. Soybean meal and soy protein concentrate in early diet elicit different nutritional programming effects on juvenile zebrafish. Zebrafish. 2016; 13: 61-9.
22- Geurden I, Borchert P, Balasubramanian MN, Schrama JW, Dupont-Nivet M, Quillet E, Kaushik SJ, Panserat S, Médale F. The positive impact of the early-feeding of a plant-based diet on its future acceptance and utilisation in rainbow trout. PloS one. 2013; 8: e83162.
23- Médale F, Blanc D, Kaushik SJ. Studies on the nutrition of Siberian sturgeon, Acipenser baeri. II. Utilization of dietary non-protein energy by sturgeon. Aquaculture. 1991; 93: 143-54.
24- Falahatkar B. The Siberian Sturgeon (Acipenser baerii, Brandt, 1869) Volume 1-Biology: Nutritional requirements of the Siberian sturgeon: an updated synthesis. Springer International Publishing; 2018: 207-28.
25- Bronzi P, Chebanov M, Michaels JT, Wei Q, Rosenthal H, Gessner J. Sturgeon meat and caviar production: Global update 2017. Journal of Applied Ichthyology. 2019; 35: 257-66.
26- Gisbert E, Williot P. Advances in the larval rearing of Siberian sturgeon. Journal of Fish Biology. 2002; 60: 1071-92.
27- Gisbert E, Solovyev M, Bonpunt E, Mauduit C. The Siberian Sturgeon (Acipenser baerii, Brandt, 1869) Volume 2-Farming: Weaning in siberian sturgeon larvae. Springer, International Publishing; 2018: 59-72.
28- Wegner A, Ostaszewska T, Rożek W. The ontogenetic development of the digestive tract and accessory glands of sterlet (Acipenser ruthenus L.) larvae during endogenous feeding. Reviews in fish biology and fisheries. 2009; 19: 431-44.
29- Falahatkar B, Sotoudeh E, Lazur AM. Evaluation of Artemia and formulated diets on performance of Persian sturgeon Acipenser persicus larvae. Journal of Applied Ichthyology. 2012; 28: 709-12.
30- Ghiasi S, Falahatkar B, Dabrowski K, Abasalizadeh A, Arslan M. Effect of thiamine injection on growth performance, hematology and germinal vesicle migration in sterlet sturgeon Acipenser ruthenus L. Aquaculture international. 2014; 22: 1563-76.
31- Pourhosein Sarameh S, Bahri AH, Falahatkar B, Yarmohammadi M, Salarzadeh A. The effect of fish and rapeseed oils on growth performance, egg fatty acid composition and offspring quality of sterlet sturgeon (Acipenser ruthenus). Aquaculture Nutrition. 2019; 25: 543-54.
32- Lee DH, Lim S, Lee S. Dietary protein requirement of fingerling sterlet sturgeon (Acipenser ruthenus). Journal of Applied Ichthyology. 2021; 37: 687-96.
33- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis of the Association of Official Analytical Chemists (19th edn). Association of Official Analytical Chemists, Arlington; 2012: p.1263.
34- Luo L, Wei H, Ai L, Liang X, Wu X, Xing W, Chen P, Xue M. Effects of early long-chain n-3HUFA programming on growth, antioxidant response and lipid metabolism of Siberian sturgeon (Acipenser baerii Brandt). Aquaculture. 2019; 509: 96-103.
35- Falahatkar B. feeding and feed formulation in aquatic organisms. Institute of Applied Scientific Higher Education of Agricultural Jihad; 2015: p.334.
36- Feldman BF, Zinkl JG, Jian NC. Schalm’s Veterinary Hematology, Lippincott, Williams and Wilkins Publication; 2000: p.1344.
37- Leonard JB, McCormick SD. Changes in haematology during upstream migration to American shad. Journal of Fish Biology. 1999; 54: 1218-30.
38- Skov PV, Larsen BK, Frisk M, Jokumsen A. Effects of rearing density and water current on the respiratory physiology and haematology in rainbow trout, Oncorhynchus mykiss at high temperature. Aquaculture. 2011; 319: 446-52.
39- Hu H, Liu J, Plagnes-Juan E, Herman A, Leguen I, Goardon L, Geurden I, Panserat S, Marandel L. Programming of the glucose metabolism in rainbow trout juveniles after chronic hypoxia at hatching stage combined with a high dietary carbohydrate: protein ratios intake at first-feeding. Aquaculture. 2018; 488: 1-8.
40- Zambonino-Infante JL, Panserat S, Servili A, Mouchel O, Madec L, Mazurais D. Nutritional programming by dietary carbohydrates in European sea bass larvae: Not always what expected at juvenile stage. Aquaculture. 2019; 501: 441-7.
41- Jiang HB, Chen LQ, Qin JG. Fishmeal replacement by soybean, rapeseed and cottonseed meals in hybrid sturgeon Acipenser baerii♀× Acipenser schrenckii♂. Aquaculture Nutrition. 2018; 24: 1369-77.
42- Shen J, Liu H, Tan B, Dong X, Yang Q, Chi S, Zhang S. Effects of replacement of fishmeal with cottonseed protein concentrate on the growth, intestinal microflora, haematological and antioxidant indices of juvenile golden pompano (Trachinotus ovatus). Aquaculture Nutrition. 2020; 26: 1119-30.
43- Przybył A, Mazurkiewicz J, Rożek W. Partial substitution of fish meal with soybean protein concentrate and extracted rapeseed meal in the diet of sterlet (Acipenser ruthenus). Journal of Applied Ichthyology. 2006; 22: 298-302.
44- Safaei H, Khara H, Falahatkar B, Vahabzadeh H. The replacement effect of soybean meal instead of fish meal in the diet on growth, quality of meat and some blood factors in sterlet fry (Acipenser ruthenus). Journal of Animal Environment. 2019; 11: 181-188.
45- Hung SSO. Sturgeon, Handbook of Nutrient Requirements of Finfish: Acipenser sp. CRC Press; 1991: 153-160.
46- Gomes EF, Rema P, Kaushik SJ. Replacement of fish meal by plant proteins in the diet of rainbow trout (Oncorhynchus mykiss): digestibility and growth performance. Aquaculture. 1995; 130: 177-86.
47- Kasper CS, Watkins BA, Brown PB. Evaluation of two soybean meals fed to yellow perch (Perca flavescens). Aquaculture Nutrition. 2007; 13: 431-8.
48- Espe M, Lemme A, Petri A, El-Mowafi A. Can Atlantic salmon (Salmo salar) grow on diets devoid of fish meal?. Aquaculture. 2006; 255: 255-62.
49- He M, Li X, Poolsawat L, Guo Z, Yao W, Zhang C, Leng X. Effects of fish meal replaced by fermented soybean meal on growth performance, intestinal histology and microbiota of largemouth bass (Micropterus salmoides). Aquaculture Nutrition. 2020; 26: 1058-71.
50- Hou Z, Fuiman LA. Nutritional programming in fishes: insights from mammalian studies. Reviews in Fish Biology and Fisheries. 2020; 30: 67-92.
51- Clarkson M, Migaud H, Metochis C, Vera LM, Leeming D, Tocher DR, Taylor JF. Early nutritional intervention can improve utilisation of vegetable-based diets in diploid and triploid Atlantic salmon (Salmo salar L.). British Journal of Nutrition. 2017; 118: 17-29.
52- Balasubramanian MN, Panserat S, Dupont-Nivet M, Quillet E, Montfort J, Le Cam A, Medale F, Kaushik SJ, Geurden I. Molecular pathways associated with the nutritional programming of plant-based diet acceptance in rainbow trout following an early feeding exposure. BMC genomics. 2016; 17: 1-20.
53- West-Eberhard MJ. Phenotypic plasticity and the origins of diversity. Annual review of Ecology and Systematics. 1989; 20: 249-78.
54- Grant KR. Fish hematology and associated disorders. Veterinary Clinics: Exotic Animal Practice. 2015; 18: 83-103.
55- Jahanbakhshi A, Imanpuor M, Taghizadeh V, Shabani A. Effects of replacing fish meal with plant protein (sesame oil cake and corn gluten) on growth performance, survival and carcass quality of juvenile beluga (Huso huso). World Journal of Fish and Marine Sciences. 2012; 4: 422-5.
56- Mohseni M, Malekpour M. Replacement of fish meal with canola meal and its effects on growth performance, digestion, indicas hematological and thyroid hormones level of Siberian sturgeon (Acipenser baerii). Iranian Scientific Fisheries Journal. 2019; 27: 135-148.
57- Moreau R, Dabrowski K, Czesny S, Cihla F. Vitamin C‐vitamin E interaction in juvenile lake sturgeon (Acipenser fulvescens R.), a fish able to synthesize ascorbic acid. Journal of Applied Ichthyology. 1999; 15: 250-7.
58- Matani Bour HA, Esmaeili M, Abedian Kenari A. Growth performance, muscle and liver composition, blood traits, digestibility and gut bacteria of beluga (Huso huso) juvenile fed different levels of soybean meal and lactic acid. Aquaculture Nutrition. 2018; 24: 1361-8.
59- Yaghoubi M, Mozanzadeh MT, Marammazi JG, Safari O, Gisbert E. Dietary replacement of fish meal by soy products (soybean meal and isolated soy protein) in silvery-black porgy juveniles (Sparidentex hasta). Aquaculture. 2016; 464: 50-9.
60- Lim SJ, Kim SS, Ko GY, Song JW, Oh DH, Kim JD, Kim JU, Lee KJ. Fish meal replacement by soybean meal in diets for Tiger puffer, Takifugu rubripes. Aquaculture. 2011; 313: 165-70.