علوم و فنون شیلات

علوم و فنون شیلات

استخراج گلوکزآمین‌گلیکان از مخلوط زائدات سر و استخوان ستون فقرات حاصل از فرآوری ماهی قزل‌آلای رنگین کمان (Oncorhynchus mykiss) با روش انحلال قلیایی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه شیلات، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس
2 استاد گروه شیلات، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس
3 دانشیار گروه شیلات، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس
4 گروه زیست شناسی و بیولوژی، دانشکده علوم غذایی و تغذیه، دانشگاه چالمرز
چکیده
در چند دهه اخیر صنعت پرورش آبزیان روند روبه رشدی را تجربه می­کند. در این راستا ماهی قزل­آلای رنگین کمان (Oncorhynchus mykiss) بعنوان یکی از گونه­های محبوب و پر طرفدار در جهان و ایران شناخته شده است که ایران با تولید سالانه حدود ۲۳۷۷۱۰ هزار تن رتبه اول تولید این ماهی را در جهان دارد. پس از فرآوری این ماهی حدود 30% آن بعنوان باقی­مانده­های حاصل از فرآوری در نظر گرفته می­شود که شامل سر، استخوان، امعاء و احشاء و... است. در مطالعه حاضر از مخلوط زائدات چرخ شده سر و استخوان این ماهی برای استخراج گلوکزآمین گلیکان با روش انحلال قلیایی استفاده شد. نتایج نشان داد مقدار بازده استخراج، محتوای کربوهیدرات، سولفات، یورونیک اسید و پروتئین نمونه گلوکزآمین­گلیکان استخراج شده به ترتیب 14/0 ± 96/1، 66/3 ± 67/59، 38/0 ± 19/10، 20/0 ± 76/7 و 43/1 ± 23/11 درصد بود. همچنین آنالیز طیف سنجی مادون قرمز (FTIR) نمونه بدست آمده حاکی از حضور پیک­های گسترده در ناحیه بین 3200 تا cm -1 3600 و ناحیه ی 2700 تا cm -1 3000 مربوط به گروه عاملی –OH و باند کششی C-H و باند خمشی سولفات S=O در ناحیه­ی cm -1 1245 بود. بعلاوه باند کششی گروه عاملی COO- که مربوط به حضور یورونیک اسید در نمونه استخراج شده در ناحیه ناحیه­ی 1480 تا cm -1 1640 مشاهده گردید. همچنین پیک­های ظاهر شده در ناحیه­ی 1385 و cm -11450 مربوط به باند کششی O-C=O و ارتعاش کششی –CO در گروه COOH بود.
کلیدواژه‌ها

موضوعات


[1] Abbas Zamani, Saeed Khalaji, The evaluation of bacterial single cell protein on performance, digestive enzymes activity, gut histology and gut microbiota of rainbow trout (Oncorhynchus mykiss) fry, J. Fish. Sci. Technol. 13 (2024) 398–411. https://doi.org/10.31857/S0044452920010052.
[2] H.A.J. and H.G.K. Seyed Hamed Masoumi, Hossein Adineh*, Mohammad Harsij, Effects of garlic extract (Allium sativum) in the diet of rainbow trout (Oncorhynchus mykiss) reared in the recirculating aquaculture system: growth performance, immune response and water quality, J. Fish. Sci. Technol. 12 (2023) 322–334.
[3] FAO, World Fisheries and Aquaculture, FAO:Rome,2022, (2022) 1–11.
[4] P. Ideia, J. Pinto, R. Ferreira, L. Figueiredo, V. Spínola, P.C. Castilho, Fish Processing Industry Residues: A Review of Valuable Products Extraction and Characterization Methods, Waste and Biomass Valorization (2019). https://doi.org/10.1007/s12649-019-00739-1.
[5] P. Anais, P.-G. Raul, B. Jean-Pascal, By-products from Fish Processing: Focus on French Industry, Util. Fish Waste (2013) 1–25.
[6] M. Nikoo, J.M. Regenstein, F. Noori, S. Piri Gheshlaghi, Autolysis of rainbow trout (Oncorhynchus mykiss) by-products: Enzymatic activities, lipid and protein oxidation, and antioxidant activity of protein hydrolysates, Lwt 140 (2021) 110702. https://doi.org/10.1016/j.lwt.2020.110702.
[7] T.K.M. M, S. B, O.S. M, Influence of Different Extraction Methods on Chemical Components of Oil Obtained from By-products of Tuna Canning Factories, J. Fish. Sci. Technol. 7 (2018) 157–165. https://jfst.modares.ac.ir/article-6-14400-fa.html.
[8] K. Arima, H. Fujita, R. Toita, A. Imazu-Okada, N. Tsutsumishita-Nakai, N. Takeda, Y. Nakao, H. Wang, M. Kawano, K. Matsushita, H. Tanaka, S. Morimoto, A. Nakamura, M. Kitagaki, Y. Hieda, R. Hatto, A. Watanabe, T. Yumura, T. Okuhara, H. Hayashi, K. Shimizu, K. Nakayama, S. Masuda, Y. Ishihara, S. Yoshioka, S. Yoshioka, S. Shirade, J.I. Tamura, Amounts and compositional analysis of glycosaminoglycans in the tissue of fish, Carbohydr. Res. 366 (2013) 25–32. https://doi.org/10.1016/j.carres.2012.11.010.
[9] A. Nakamura, S. Masuda, Y. Ishihara, S. Morimoto, R. Toita, A. Imazu-Okada, N. Takeda, S.S.S.S. Yoshioka, H. Tanaka, J.I. Tamura, N. Tsutsumishita-Nakai, H. Hayashi, K. Shimizu, K. Matsushita, M. Kawano, K. Arima, A. Watanabe, T. Okuhara, K. Nakayama, R. Hatto, Y. Nakao, S.S.S.S. Yoshioka, H. Fujita, T. Yumura, Y. Hieda, S. Shirade, M. Kitagaki, H. Wang, R. Toita, A. Imazu-Okada, N. Tsutsumishita-Nakai, N. Takeda, Y. Nakao, H. Wang, M. Kawano, K. Matsushita, H. Tanaka, S. Morimoto, A. Nakamura, M. Kitagaki, Y. Hieda, R. Hatto, A. Watanabe, T. Yumura, T. Okuhara, H. Hayashi, K. Shimizu, K. Nakayama, S. Masuda, Y. Ishihara, S.S.S.S. Yoshioka, S.S.S.S. Yoshioka, S. Shirade, J.I. Tamura, Amounts and compositional analysis of glycosaminoglycans in the tissue of fish, Carbohydr. Res. 366 (2013) 25–32. https://doi.org/10.1016/j.carres.2012.11.010.
[10] W. Chen, Z. Jia, J. Zhu, Y. Zou, G. Huang, Y. Hong, Optimization of ultrasonic-assisted enzymatic extraction of polysaccharides from thick-shell mussel (Mytilus coruscus) and their antioxidant activities, Int. J. Biol. Macromol. 140 (2019) 1116–1125. https://doi.org/10.1016/j.ijbiomac.2019.08.136.
[11] M. Abdollahi, M. Rezaei, A. Jafarpour, I. Undeland, Sequential extraction of gel-forming proteins, collagen and collagen hydrolysate from gutted silver carp (Hypophthalmichthys molitrix), a biorefinery approach, Food Chem. 242 (2018) 568–578. https://doi.org/10.1016/j.foodchem.2017.09.045.
[12] S. Pezeshk, M. Rezaei, H. Hosseini, M. Abdollahi, Impact of pH-shift processing combined with ultrasonication on structural and functional properties of proteins isolated from rainbow trout by-products, Food Hydrocoll. 118 (2021) 106768. https://doi.org/10.1016/j.foodhyd.2021.106768.
[13] S. Naghdi, M. Rezaei, M. Abdollahi, M. Tabarsa, Enzymatic extraction of sulfated polysaccharide from the skin of rainbow trout (Oncorhynchus mykiss) and evaluation of its chemical, antioxidant and functional properties, Iran. Food Sci. Technol. Res. J. (2022).
[14] K. Dubois, K. Gilles, P. Hamilton, A. Rebers, F. Smith, Colorimetric Method for Determination of Sugars and Related Substances, Anal. Chem. 28 (1956) 350–356. https://doi.org/10.1021/ac60111a017.
[15] K.S. Dodgson, R.G. Price, A note on the determination of the ester sulphate content of sulphated polysaccharides, Biochem. J. 84 (1962) 106.
[16] C. Carpita, D. Ci, Measurement of Uranic Acids without from Neutral Sugars, 162 (1991) 157–162.
[17] N. Souissi, S. Boughriba, O. Abdelhedi, M. Hamdi, M. Jridi, S. Li, M. Nasri, Extraction, structural characterization, and thermal and biomedical properties of sulfated polysaccharides from razor clam Solen marginatus, RSC Adv. 9 (2019) 11538–11551. https://doi.org/10.1039/C9RA00959K.
[18] Y. Yuan, X. Xu, C. Jing, P. Zou, C. Zhang, Y. Li, Microwave assisted hydrothermal extraction of polysaccharides from Ulva prolifera: Functional properties and bioactivities, Carbohydr. Polym. 181 (2018) 902–910. https://doi.org/10.1016/j.carbpol.2017.11.061.
[19] M. Jridi, R. Nasri, Z. Marzougui, O. Abdelhedi, M. Hamdi, M. Nasri, Characterization and assessment of antioxidant and antibacterial activities of sulfated polysaccharides extracted from cuttlefish skin and muscle, Int. J. Biol. Macromol. 123 (2019) 1221–1228. https://doi.org/10.1016/j.ijbiomac.2018.11.170.
[20] F. Krichen, W. Karoud, A. Sila, B.E. Abdelmalek, R. Ghorbel, S. Ellouz-Chaabouni, A. Bougatef, Extraction, characterization and antimicrobial activity of sulfated polysaccharides from fish skins, Int. J. Biol. Macromol. 75 (2015) 283–289. https://doi.org/10.1016/j.ijbiomac.2015.01.044.
[21] M. Alboofetileh, M. Rezaei, M. Tabarsa, S. You, Bioactivities of Nizamuddinia zanardinii sulfated polysaccharides extracted by enzyme, ultrasound and enzyme-ultrasound methods, J. Food Sci. Technol. 56 (2019) 1212–1220. https://doi.org/10.1007/s13197-019-03584-1.
[22] S. Li, Q. Xiong, X. Lai, X. Li, M. Wan, J. Zhang, Y. Yan, M. Cao, L. Lu, J. Guan, Molecular modification of polysaccharides and resulting bioactivities, Compr. Rev. Food Sci. Food Saf. 15 (2016) 237–250.
[23] Q. Xiong, Z. Song, W. Hu, J. Liang, Y. Jing, L. He, X. Wang, S. Hou, T. Xu, J. Chen, D. Zhang, Methods of extraction , separation , purification , structural characterization for polysaccharides from aquatic animals and their major pharmacological activities, Crit. Rev. Food Sci. Nutr. 0 (2018) 1–16. https://doi.org/10.1080/10408398.2018.1512472.
[24] E. Balbinot-Alfaro, M. da Rocha, A. da T. Alfaro, V.G. Martins, Properties, bioactive potential and extraction processes of glycosaminoglycans: An overview, Cienc. Rural 51 (2021) 1–9. https://doi.org/10.1590/0103-8478cr20200821.
[25] M. Jridi, O. Abdelhedi, N. Zouari, N. Fakhfakh, M. Nasri, Development and characterization of grey triggerfish gelatin/agar bilayer and blend films containing vine leaves bioactive compounds, Food Hydrocoll. 89 (2019) 370–378. https://doi.org/10.1016/j.foodhyd.2018.10.039.
[26] S. Naghdi, M. Rezaei, M. Tabarsa, M. Abdollahi, Ultrasonic-assisted enzymatic extraction of sulfated polysaccharide from Skipjack tuna by-products, Ultrason. Sonochem. 95 (2023) 106385. https://doi.org/10.1016/j.ultsonch.2023.106385.
[27] O. Abdelhedi, R. Nasri, N. Souissi, M. Nasri, M. Jridi, Sulfated polysaccharides from common smooth hound: Extraction and assessment of anti-ACE, antioxidant and antibacterial activities, Carbohydr. Polym. 152 (2016) 605–614. https://doi.org/10.1016/j.carbpol.2016.07.048.
[28] Q. Huang, R. Chen, Y. Ding, S. Xiong, Preparation and properties of polysaccharide from Acipenser schrenckii skull, Food Sci. 30 (2009) 1–5.
[29] M. Jridi, M. Mezhoudi, O. Abdelhedi, S. Boughriba, W. Elfalleh, N. Souissi, R. Nasri, M. Nasri, Bioactive potential and structural characterization of sulfated polysaccharides from Bullet tuna (Auxis Rochei) by-products, Carbohydr. Polym. 194 (2018) 319–327. https://doi.org/10.1016/j.carbpol.2018.04.038.
[30] F. Krichen, W. Karaoud, N. Sayari, A. Sila, F. Kallel, S. Ellouz-Chaabouni, A. Bougatef, Sulfated Polysaccharides from Tunisian Fish Skins: Antioxidant, DNA Damage Protective Effect and Antihypertensive Activities, J. Polym. Environ. 24 (2016) 166–175. https://doi.org/10.1007/s10924-016-0759-6.
[31] H.M. Shang, H.Z. Zhou, R. Li, M.Y. Duan, H.X. Wu, Y.J. Lou, Extraction optimization and influences of drying methods on antioxidant activities of polysaccharide from cup plant (Silphium perfoliatum L.), PLoS One 12 (2017) 1–18. https://doi.org/10.1371/journal.pone.0183001.
[32] B.M. Khan, H.M. Qiu, X.F. Wang, Z.Y. Liu, J.Y. Zhang, Y.J. Guo, W.Z. Chen, Y. Liu, K.L. Cheong, Physicochemical characterization of Gracilaria chouae sulfated polysaccharides and their antioxidant potential, Int. J. Biol. Macromol. 134 (2019) 255–261. https://doi.org/10.1016/j.ijbiomac.2019.05.055.
[33] F. Grina, Z. Ullah, E. Kaplaner, A. Moujahid, R. Eddoha, B. Nasser, P. Terzioğlu, M.A. Yilmaz, A. Ertaş, M. Öztürk, A. Essamadi, In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical fingerprints of five Moroccan seaweeds, South African J. Bot. 128 (2020) 152–160. https://doi.org/10.1016/j.sajb.2019.10.021.
[34] Y.J. Cho, A.T. Getachew, P.S. Saravana, B.S. Chun, Optimization and characterization of polysaccharides extraction from Giant African snail (Achatina fulica) using pressurized hot water extraction (PHWE), Bioact. Carbohydrates Diet. Fibre (2019) 100179. https://doi.org/10.1016/j.bcdf.2019.100179.
[35] X.Y. Pan, Y.M. Wang, L. Li, C.F. Chi, B. Wang, Four antioxidant peptides from protein hydrolysate of red stingray (dasyatis akajei) cartilages: Isolation, identification, and in vitro activity evaluation, Mar. Drugs 17 (2019). https://doi.org/10.3390/md17050263.
[36] H. Qi, T. Zhao, Q. Zhang, Z. Li, Z. Zhao, R. Xing, Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta), J. Appl. Phycol. 17 (2005) 527–534. https://doi.org/10.1007/s10811-005-9003-9.
[37] L. Soua, M. Koubaa, F.J. Barba, J. Fakhfakh, H.K. Ghamgui, S.E. Chaabouni, Water-Soluble Polysaccharides from Ephedra alata Stems: Structural characterization, functional properties, and antioxidant activity, Molecules 25 (2020) 1–18. https://doi.org/10.3390/molecules25092210.
[38] A. Hamzaoui, M. Ghariani, I. Sellem, M. Hamdi, A. Feki, I. Jaballi, M. Nasri, I. Ben Amara, Extraction, characterization and biological properties of polysaccharide derived from green seaweed “Chaetomorpha linum” and its potential application in Tunisian beef sausages, Int. J. Biol. Macromol. 148 (2020) 1156–1168. https://doi.org/10.1016/j.ijbiomac.2020.01.009.