علوم و فنون شیلات

علوم و فنون شیلات

تولید پاستای غنی از فوکوئیدان هیدرولیز شده جلبک قهوه‌ای Nizamuddinia zanardinii و بررسی ویژگی‌های شیمیایی، فیزیکی و حسی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه فرآوری محصولات شیلاتی، دانشکده علوم دریایی، دانشگاه تربیت مدرس، نور، ایران
2 گروه توسعه صنعتی و پژوهشی زر، تهران، ایران
3 گروه شیلات، دانشکده منابع طبیعی، دانشگاه گیلان، صومعه سرا، ایران
چکیده
هدف از مطالعه حاضر، بررسی امکان بهبود خواص ضد دیابتی فوکوئیدان استخراج شده از جلبک قهوه ای Nizamuddinia zanardinii و غنی سازی فرمولاسیون پاستا با فوکوئیدان می باشد. فوکوئیدان خام با استفاده از روش حلالی در دمای ۶۰ درجه سلسیوس استخراج و سپس در دمای ۱۰۰ درجه سلسیوس به ‌مدت 10 تا 60 دقیقه توسط هیدروکلریک اسید ۰۱/۰ نرمال هیدرولیز شد. قابلیت هیدرولیزات تولید شده در ممانعت از فعالیت آنزیم‌های ⍺-آمیلاز و ⍺-گلوکوزیداز ارزیابی و در نهایت در سطوح 0/125، 0/25 و 0/5 درصد به پاستا اضافه شد. در حالی که با افزایش زمان هیدرولیز قابلیت ممانعت از آنزیم ⍺-آمیلاز تا سطح مشخصی افزایش و سپس کاهش یافت، این روند در خصوص آنزیم ⍺-گلوکوزیداز به صورت کامل کاهشی بود. غنی‌سازی پاستا با فوکوئیدان هیدرولیز شده تا سطح 0/5 درصد میزان رطوبت، خاکستر و پروتئین محصول را به صورت معنی دار تغییر نداد. با افزایش سطوح فوکوئیدان، زمان پخت (8 به 9 دقیقه) و افت پخت (6/27 به 7/10 درصد) افزایش یافت. با افزایش میزان فوکوئیدان، شاخص‌های رنگی L* کاهش، a* افزایش و b* بدون تغییر باقی ماند. در مقایسه با گروه کنترل، نتایج ارزیابی حسی تفاوت معنی‌داری در رنگ ظاهری قبل و بعد از پخت، عطر و بو، طعم و مزه، بافت و پذیرش کلی محصولات تولید شده نشان نداد. به طور کلی، نتایج حاضر نشان داد که هیدرولیز به مدت 20 دقیقه سبب افزایش فعالیت فوکوئیدان در ممانعت از فعالیت آنزیم ⍺-آمیلاز می شود و امکان غنی سازی پاستا با هیدرولیزات فوکوئیدان تا سطح 0/25 درصد امکان پذیر است.
کلیدواژه‌ها

موضوعات


[1] Kill R, Turnbull K (Eds.). Pasta and semolina technology. Blackwell Science Ltd editorial offices, England. 2001;1071pp.
[2] Cocci E, Sacchetti G, Vallicelli M, Angioloni A, Dalla Rosa M. Spaghetti cooking by microwave oven: Cooking kinetics and product quality. Journal of food engineering, 2008;85(4):537-546.
[3] Lee SJ, Rha M, Koh W, Park W, Lee C, Kwon YA, Hwang JK. Measurement of cooked noodle stickiness using a modified instrumental method. Cereal chemistry, 2002;79(6):838-842.
[4] El-Khayat GH, Samaan J, Manthey FA, Fuller MP, Brennan CS. Durum wheat quality I: correlation between physical and chemical characteristics of Syrian durum wheat cultivars. International Journal of Food Science and Technology, 2006;41:22-29.
[5] Yahyavi M, Shokouhi F, Jamali V, Afshin Pazhouh R, Amini M. The most recent enrichments in the pasta industry. 2013; 8pp. (In Persian)
[6] Verardo V, Ferioli F, Riciputi Y, Iafelice G, Marconi E, Fiorenza Caboni M. Evaluation of lipid oxidation in spaghetti pasta enriched with long chain n_3polyunsaturated fatty acids under different storage conditions. Food Chemistry, 2009;114:472-477.
[7] Fradique M, Batista AP, Nunes M, Gouveia L, Bandarra MN, Raymundo A. Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products, Part 1: Preparation and evaluation. Journal of Society of Chemical Industry Food Agriculture, 2010;90:1656-1664.
[8] Ghiasi Tarzi B, Shakeri B, Ghavami M. Effects of adding wheat bud on the chemical, sensory, cook and microbial properties of pasta. Iranian Journal of Nutrition Science and Food Technology, 2012; 3, 21pp. (In Persian)
[9] Prabhasankar P, Kadam SU. Marine foods as functional ingredients in bakery and pasta products. Food Research International, 2010;43:1975-1980.
[10] Lomartire S, Gonçalves AM. An overview of potential seaweed-derived bioactive compounds for pharmaceutical applications. Marine Drugs, 2022;20(2):141.
[11] de Jesus Raposo MF, De Morais AMB, De Morais RMSC. Marine polysaccharides from algae with potential biomedical applications. Marine drugs, 2015;13(5):2967-3028.
[12] Jayawardena TU, Nagahawatta DP, Fernando IPS, Kim YT, Kim JS, Kim WS, Jeon YJ. A review on fucoidan structure, extraction techniques, and its role as an immunomodulatory agent. Marine drugs, 2022;20(12):755.
[13] Oliveira C, Neves NM, Reis RL, Martins A, Silva TH. A review on fucoidan antitumor strategies: From a biological active agent to a structural component of fucoidan-based systems. Carbohydrate Polymers, 2020;239:116131.
[14] Dirir AM, Daou M, Yousef AF, Yousef LF. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochemistry Reviews, 2022;21(4):1049-1079.
[15] Rahman MM, Dhar PS, Anika F, Ahmed L, Islam MR, Sultana NA, Rauf A. Exploring the plant-derived bioactive substances as antidiabetic agent: an extensive review. Biomedicine & Pharmacotherapy, 2022;152,113217.
[16] Mousavi NS, Tabarsa M, Ahmadi H. Evaluation of relationship between molecular weight and antioxidant properties of hydrolyzed fucoidan from brown seaweed Nizamuddinia zanardinii. Fisheries Science and Technology, 2022;11(2):153-164.
[17] Alboofetileh M, Rezaei M, Tabarsa M, You S, Yelithao Kh, Dabaghian HE, Cao R, Bita S. The activation of NF-κB and MAPKs signaling pathways of RAW264.7 murine macrophages and natural killer cells by fucoidan from Nizamuddinia zanardinii. International Journal of Biological Macromolecules, 2020p;148:56-67.
[18] Chen BJ, Shi MJ, Cui S, Hao SX, Hider RC, Zhou T. Improved antioxidant and anti-tyrosinase activity of polysaccharide from Sargassum fusiforme by degradation. International Journal of Biological Macromolecules, 2016;92:715-22.
[19] Jiang J, Meng FY, He Z, Ning YL, Li XH, Song H, Wang J, Zhou R. Sulfated modification of longan polysaccharide and its immunomodulatory and antitumor activity in vitro. International Journal of Biological Macromolecules, 2014;67:323-329.
[20] Karnjanapratum S, Tabarsa M, Cho M, You S. Characterization and immunomodulatory activities of sulfated polysaccharides from Capsosiphon fulvescens. International Journal of Biological Macromolecules, 2012;51(5):720-729.
[21] Tabarsa M, Dabaghian EH, You S, Yelithao K, Cao R, Rezaei M, Bita S. The activation of NF-κB and MAPKs signaling pathways of RAW264. 7 murine macrophages and natural killer cells by fucoidan from Nizamuddinia zanardinii. International Journal of Biological Macromolecules, 2020;148:56-67.
[22] Khajavi S, Tabarsa M, Ahmadi H, Rezaei M. Relationship evaluation of molecular weight and antioxidant and alpha amylase inhibition properties of fucoidan and alginate from brown seaweed Padina pavonica in comparison with polysaccharides from Flixweed and Fennel. Journal of Fisheries Science and Technology, 2021;1:31-45.
[23] Borazjani NJ, Tabarsa M, You S, Rezaei M. Effects of extraction methods on molecular characteristics, antioxidant properties and immunomodulation of alginates from Sargassum angustifolium. International Journal of Biological Macromolecules 2017; 101:703-711.
[24] Karimi A, Azizi MH, Ahmadi Gavlighi H. Fractionation of hydrolysate from corn germ protein by ultrafiltration: In vitro antidiabetic and antioxidant activity. Food Science & Nutrition, 2020;8(5):2395-2405.
[25] Apostolidis E, Kwon YI, Shetty K. Inhibitory potential of herb, fruit,and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Innov. Food Sci. Emerg. Technol. 2007;8:46–54.
[26] AOAC, 2003. Official methods of analysis of the association of official's analytical chemists, 17th edn. Association of Official analytical chemists, Arlington, Virginia.
[27] Voisey PW, Larmond E, Wasik RJ. Measuring the texture of cooked spaghetti. 1. Sensory and instrumental evaluation of firmness. Canadian Institute of Food Science and Technology Journal, 1978;11(3):142-148.
[28] Kim KT, Rioux LE, Turgeon SL. Alpha-amylase and alpha-glucosidase inhibition is differentially modulated by fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum. Phytochemistry, 2014;98:27-33.
[29] Koh HSA, Lu J, Zhou W. Structural dependence of sulfated polysaccharide for diabetes management: Fucoidan from Undaria pinnatifida inhibiting α-glucosidase more strongly than α-amylase and amyloglucosidase. Frontiers in pharmacology, 2020;11: 831.
[30] Alavi, M., Mehdi, T., & Ahmadi Gavlighi, H. (2021). Antioxidant activity, α-amylase and α-glucosidase inhibition properties of sulfated-polysaccharides purified from freshwater plant Myriophyllum spicatum L. Journal of food science and technology (Iran), 18(116), 81-90.
[31] Zhan, H., Yu, G., Zheng, M., Zhu, Y., Ni, H., Oda, T., & Jiang, Z. (2022). Inhibitory effects of a low-molecular-weight sulfated fucose-containing saccharide on α-amylase and α-glucosidase prepared from ascophyllan. Food & Function, 13(3), 1119-1132.
[32] Fradinho P, Raymundo A, Sousa I, Domínguez H, Torres MD. Edible brown seaweed in gluten-free pasta: Technological and nutritional evaluation. Foods, 2019;8(12):622.
[33] Ghandehari Yazdi, AP, Kamali Rousta L, Aziz Tabrizzad MH, Amini M, Tavakoli M, Yahyavi M. A review: New approach to enrich pasta with fruits and vegetables. Journal of Food Science and Technology, 2020;107:129-149.
[34] Shakeri V, Tarzi BG, Ghavami M. The effects of wheat germ on chemical, sensorial, cooking and microbial properties of Pasta. Iranian Journal of Nutrition Sciences and Food Technology, 2012;7:89-100.
[35] Chansri R, Puttanlek C, Rungsadthogy V, Uttapap D. Characteristics of clear noodles prepared from edible canna starches. Journal of food Science, 2005;70(5):S337-S342.
[36] Wu L, Zhang C, Long Y, Chen Q, Zhang W, Liu G. Food additives: From functions to analytical methods. Critical Reviews in Food Science and Nutrition, 2022;62(30): 8497-8517.
[37] Crizel TDM, Rios ADO, Thys RCS, Flôres SH. Effects of orange
by-product fiber incorporation on the functional and technological properties of pasta. Food Science and Technology, 2015;35(3):546-551.
[38] Biernacka B, Dziki D, Gawlik-Dziki U, Różyło R, Siastała M Physical,
sensorial, and antioxidant properties of common wheat pasta enriched with carob fiber. LWT-Food Science and Technology, 2017;77:186-192.
[39] Essa RY, Mohamed EE. Improvement of functional and technological
characteristics of spaghetti by the integration of pomegranate peels powder. American
Journal of Food Technology, 2018;13:1-7.