علوم و فنون شیلات

علوم و فنون شیلات

کاربرد فراصوت در استخراج آستازانتین از زاندات میگوی موزی (Fenneropenaeus merguiensis) و بررسی خواص آنتی اکسیدانی آن

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور
2 دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس
چکیده
هدف از تحقیق حاضر استخراج آستازانتین از میگوی موزی (Fenneropenaeus merguiensis) با استفاده از روش فراصوت و بررسی خواص آنتی اکسیدانی آن بود. استخراج با حلال آلی استون به وسیله روش خیساندن روی همزن مغناطیسی در دمای محیط به همراه فراصوت در توان­های 200 و 400 وات در زمان های 5، 10 و 15 دقیقه انجام گرفت و همچنین آزمون­های خنثی کنندگی رادیکال های آزاد DPPH و ABTS و احیا یون Fe3+ انجام شد. برای تجزیه و تحلیل آماری داده ها از تجزیه واریانس یکطرفه بهره گرفته شد. بهترین بازده آستازانتین در شرایط 20 دقیقه همزن مغناطیسی در دمای محیط به همراه 400 وات فراصوت با زمان 10 دقیقه با μg/g 012/0 ± 5/ 79 بود و همچنین کمترین میانگین بازده را با شرایط 15 دقیقه همزن مغناطیسی در دمای محیط به همراه 400 وات فراصوت با زمان 15 دقیقه با مقدار μg/g 049/0± 3/69 مشاهده شد. نتیجه ی هر سه آزمون ABTS ،DPPH و احیا یون Fe3+ نشان داد که شرایط 20 دقیقه همزن مغناطیسی در دمای محیط به همراه 400 وات فراصوت با زمان 10 دقیقه بود. به طور کلی نتایج این تحقیق نشان داد که استفاده از فراصوت در زمان­های کمتر ثاتیر بهتری دارد و با افزایش زمان باعث کاهش بازده و کاهش خواص آنتی اکسیدانی می­ شود.

کلیدواژه‌ها

موضوعات


1. IMARC. (2020). Shrimp market: global industry trends, share, size, growth, opportunity and 990 forecasts.
2. Amiguet, E., Moortèle, B.V.D., Cordier, P., Hilairet, N., and Reynard, B. (2012). Deformation mechanisms and rheology of serpentines in experiments and in nature. Journal of Geophysical Research: Solid Earth, 119, pp.4640–4655.
3. Kaur, S. and Dhillon, G.S. (2013). Recent trends in biological extraction of chitin from marine shell wastes; a review. Critical Reviews in Biotechnology, 35(1), pp. 44-61.
4. Cheong, J.Y., Muskhazli, M., Nor Azwady, A.B., Ahmad, S.A. and Adli, A.A. (2020). Three-dimensional optimisation for the enhancement of astaxanthin recovery from shrimp shell wastes by Aeromonas hydrophila. Biocatalysis and Agricultural Biotechnology, 27, pp.101649.
5. Galasso, C., Corinaldesi, C., and Sansone, C. (2017). Carotenoids from Marine Organisms: Biological Functions and Industrial Applications. Biological Functions and Industrial Applications. Antioxidants, 6(4), 96.
6. Ambati, R.R., Moi, P.S., Ravi, S. and Aswathanarayana, R.G. (2014). Review Astaxanthin: sources, extraction, stability, biological activitiesand its commercial applications. Marine Drugs, 12(1), pp.128–152.
7. Kuan, A.T., Phelps, J.S., Thomas, L.A., Nguyen, T.M., Han, J., Chen, CL., Azevedo, A.W., Tuthill, J.C.,Funke, J., Cloetens, P., Pacureanu, A., and Lee, W.C.A. (2020). Dense neuronal reconstruction through X-ray holographic nano-tomography. Nature Neuroscience, 23, pp.1637-1643.
8. Davinelli, S., Nielsen, M.E., Scapagnini, G. (2018). Astaxanthin in skin health, repair and disease: a comprehensive review. Nutrients, 10, pp.522–534.
9. Brotosudarmo, T.H.P., Limantara, L., Setiyono, E. and Heriyanto, L. (2020). Structures of astaxanthin and their consequences for therapeutic application: review article. International Journal of Food Science, 23(6), pp.1-16.
10. Kishimoto, K., Kouzai, Y., Kaku, H., Shibuya, N., Minami, E., and Nishizawa, Y. (2010). Perception of the chitin oligosaccharides contributes to disease resistance to blast fungus. Magnaporthe oryzae in rice, 64(2), pp. 343–354.
11. Leung, P. and Engle, C. (2006). Shrimp culture economics, market, and trade. Blackwell Publishing, Oxford.
12. Sourinejad, L., Kalbassi, M.R., and Martinez, P. (2014). Mixed milt fertilization of endangered Caspian brown trout Salmo trutta caspius influences effective population size of breeder. Iranian Journal of Fisheries Sciences, 14(2), pp. 393-408.
13. Lee, S.Y., Show, P.L., Ling, T.C. and Chang, J.S. (2018). Single-step disruption and protein recovery from Chlorella vulgaris using ultrasonication and ionic liquid buffer aqueous solutions as extractive solvents. Biochemical Engineering Journal, 124, pp.26-35.
14. Saini, R.K., and Keum, Y.S. (2018). Carotenoid extraction methods: A review of recent developments. Food Chemistry, 240, pp.90–103.
15. Delgado-Vargas, F., Jimenez, A.R., Paredes-Lopez, O. (2000). Natural pigments: Carotenoids, anthocyanins, and betalains - Characteristics, biosynthesis, processing, and stability, Crit. Rev. Food Sci. Nutr. 40 (3), pp.173–289.
16. Wang, M., Yuan, W., Jiang, X., Jing, Y. and Wang, Z. (2014). Disruption of microalgal cells using high frequency focused ultrasound. Bioresource Technology, 153, pp.315-321.
17. Chemat, F., Rombaut, N., Meullemiestre, A., Turk, M., Perino, S., FabianoTixier, A.S. and Vian, M.A. (2017). Review Ultrasound assisted extraction of food and natural products. Mechanisms, techniques,combinations, protocols and applications. Ultrason Sonochem, 34, pp.540-560.
18. Gao, J., You, J., Kang, J., Nie, F., Ji, H. and Liu, S. (2020). Recovery of astaxanthin from shrimp (Penaeus vannamei) waste by ultrasonic assisted extraction using ionic liquid in water microemulsion. Food Chemistry, 325, pp.126850.
19. Sharayei, P., Azarpazhooh, E., Zomorodi, S., Einafshar, S. and Ramaswamy, H.S. (2020). Optimization of ultrasonic assisted extraction of astaxanthin from green tiger (Penaeus semisulcatus) shrimp shell. Ultrasonics Sonochemistry, 76, pp.105666.
20. Jiang, H.L., Yang, J.L., and Shi, Y.P. (2016). Optimization of ultrasonic cell grinder extraction of anthocyanins from blueberry using response surface methodology. Ultrasonics Sonochemistry, 34, pp.325-331.
21. Sachindra, N.M., Bhaskar, N. and Mahendrakar, N.S. (2006). Recovery of carotenoids from shrimp waste in organic solvents. Waste Manage, 26, pp.1092–1098.
22. Brand-Williams, W., Cuvelier, M.E. and Berset, C.L.W.T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), pp.25-30.
23. Borazjani, N.J., Tabarsa, M., You, S. and Rezaei, M. (2017). Effects of extraction methods on molecular characteristics, antioxidant properties and immunomodulation of alginates from Sargassum angustifolium. International journal of biological macromolecules, 101, pp.703-71.
24. Chew, Y.L., Lim, Y.Y., Omar, M. and Khoo, K.S. (2008). Antioxidant activity of three edible seaweeds from two areas in South East Asia. LWT-Food Science and Technology, 41(6), pp.1067-1072.
25. Vimala, S., and Paul, V.I. (2009). Utilization of crustacean fishery waste as a source of carotenoids. J. Exp. Zool. Ind, 12(2), pp.377-380.
26. Xu, Y., and Pan, S. (2013). Effects of various factors of ultrasonic treatment on the extraction yield of all-trans-lycopene from red grapefruit (Citrus paradise Macf.), Ultrason. Sonochem, 20 (4), pp.1026–1032.
27. Zhang H, Tang B, Row KH. (2014). A green deep eutectic solventbased ultrasound-assisted method to extract astaxanthin from shrimp byproduct. Analytical Letters 47: 742–749.
28. Liu, X., Osawa, T. (2007). Cis astaxanthin and especially 9-cis astaxanthin exhibits a higher antioxidant activity in vitro compared to the all-trans isomer. Biochem. Biophys. Res. Commun., 357, pp.187–193.
29. Holanda, H.D.D., Netto, F.M. (2006). Recovery of components fromshrimp (Xiphopenaeus kroyeri) processing waste by enzymatic hydrolysis. J. Food Sci., 71(5), pp.298-303.
30. Yolmeh, M., Najafi, M.B.H. and Farhoosh, R., (2014). Optimisation of ultrasound-assisted extraction of natural pigment from annatto seeds by response surface methodology (RSM). Food chemistry, 155, pp.319-324.
31. Tsiaka, T., Zoumpoulakis, P., Sinanoglou, V., Makris, C., Heropoulos, G., and Calokerinos, A. (2015). Response surface methodology toward the optimization of high-energy carotenoid extraction from Aristeus antennatus shrimp, Anal. Chim, 877, pp.100–110.
32. Zhao, L., Zhao, G., Chen, F., Wang, Z., Wu, J., and Hu, X. (2006). Different effects of microwave and ultrasound on the stability of (all-E)-astaxanthin, J. Agric. Food Chem, 54(21), pp.8346–8351
33. Jaeschke, D.P., Rech, R., Marczak, L.D.F., and Mercali, G.D. (2017). Ultrasound as analternative technology to extract carotenoids and lipids from Heterochlorella luteoviridis, Bioresour. Technol, 224, pp.753–757.
34. Solva, A.K.N., Rddrogues, B.D., Solva, L.H.M., Rddrogues, A.M.C. (2018). Drying and extraction of astaxanthin from pink shrimp waste (Farfantepenaeus subtilis): the applicability of spouted beds. Food Sci Technol, 38, pp.454-461
35. Dalei, J., and Sahoo, D. (2015). Extraction and Characterization of Astaxanthin from the Crustacean Shell Waste from Shrimp Processing Industries. Int J Pharm Sci Res 2015; 6(6), pp.2532-2537.
36. Oancea, S., Grosu, C., Ketney, O., and Stoia, M. (2013). Conventional and ultrasound-assisted extraction of anthocyanins from blackberry and sweet cherry cultivars. Acta Chimica Slovenica, 60(2), pp.383-389.
37. Entezari, M.H., and Kruus, P. (1996). Effect of frequency on sonochemical reactions II. Temperature and intensity effects, Ultrason. Sonochem, 3, pp.19–24.
38. Lou, Z., Wang, H., Zhang, M., and Wang, Z. (2010). Improved extraction of oil from chickpea under ultrasound in a dynamic system, J. Food Eng, 98, pp.13–18.
39. Chintong, Sutasinee; Phatvej, Wipaporn; Rerk-Am, Ubon; Waiprib, Yaowapha; Klaypradit, Wanwimol (2019). In Vitro Antioxidant, Antityrosinase, and Cytotoxic Activities of Astaxanthin from Shrimp Waste. Antioxidants, 8(5), pp.128.
40. Yuan, C., Du, L., Jin, Z., and Xu, X. (2013). Storage stability and antioxidant activity of complex of astaxanthin with hydroxypropyl-β-cyclodextrin. Carbohydrate polymers, 91(1), pp.385-389.
41. Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of agricultural and food chemistry, 53(6), pp.1841-1856.
42. Saini, R.K., and Keum, Y.S. (2017). Carotenoid extraction methods: a review of recent developments, Food Chem, 200, pp.81–86.
43. Sowmya, R., and Sachindra, N.M. (2012). Evaluation of antioxidant activity of carotenoid extract from shrimp processing by products by in vitro assays and in membrane model system. Food Chem., 134, pp.308–314.
44. Sindhu, S., Sherief, P. (2011). In Extraction, characterization, antioxidant and anti-inflammatory properties of carotenoids from the shell waste of arabian red shrimp Aristeus alcocki, ramadan 1938. Open Conf. Proc. J., 2, pp.95–103.