1. Jobling M. National Research Council (NRC): Nutrient requirements of fish and shrimp. Aquac Int. 2012;20(3):601-2.
2. Fu S, Qian K, Liu H, Song F, Ye J. Effects of fish meal replacement with low-gossypol cottonseed meal on the intestinal barrier of juvenile golden pompano (Trachinotus ovatus). Aquac Res. 2022;53(1):285-99.
3. Shen J, Liu H, Tan B, Dong X, Yang Q, Chi S, et al. Effects of replacement of fishmeal with cottonseed protein concentrate on the growth, intestinal microflora, haematological and antioxidant indices of juvenile golden pompano (Trachinotus ovatus). Aquacult Nutr. 2020;26(4):1119-30.
4. Navarrete P, Tovar-Ramírez D. Use of yeasts as probiotics in fish aquaculture. In: Hernandez-Vergara M, Perez-Rostro C, editors. Sustainable aquaculture techniques. 1. Rijeka, Croatia: IntechOpen; 2014. p. 135-72.
5. Agboola JO, Øverland M, Skrede A, Hansen JØ. Yeast as major protein-rich ingredient in aquafeeds: a review of the implications for aquaculture production. Rev Aquacult. 2021;13(2):949-70.
6. Andriamialinirina THJ, Irm M, Taj S, Lou JH, Jin M, Zhou Q. The effects of dietary yeast hydrolysate on growth, hematology, antioxidant enzyme activities and non-specific immunity of juvenile Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol. 2020;101:168-75.
7. Barnes ME, Durben DJ, Reeves SG, Sanders R. Dietary yeast culture supplementation improves initial rearing of McConaughy strain rainbow trout. Aquacult Nutr. 2006;12(5):388-94.
8. Ozório ROA, Portz L, Borghesi R, Cyrino JEP. Effects of dietary yeast (Saccharomyces cerevisia) supplementation in practical diets of tilapia (Oreochromis niloticus). Animals [Internet]. 2012; 2(1):[16-24 pp.].
9. Rimoldi S, Gini E, Koch JFA, Iannini F, Brambilla F, Terova G. Effects of hydrolyzed fish protein and autolyzed yeast as substitutes of fishmeal in the gilthead sea bream (Sparus aurata) diet, on fish intestinal microbiome. BMC Vet Res. 2020;16(1):118.
10. Zhang W-J, Xu Z-R, Zhao S-H, Sun J-Y, Yang X. Development of a microbial fermentation process for detoxification of gossypol in cottonseed meal. Animal feed science and technology. 2007;135(1):176-86.
11. Lyons P, Turnbull J, Dawson KA, Crumlish M. Phylogenetic and functional characterization of the distal intestinal microbiome of rainbow trout Oncorhynchus mykiss from both farm and aquarium settings. J Appl Microbiol. 2017;122(2):347-63.
12. Clements KD. Fermentation and gastrointestinal microorganisms in fishes. Gastrointestinal Microbiology: Volume 1 Gastrointestinal Ecosystems and Fermentations. 1997:156-98.
13. Barros MM, Lim C, Evans JJ, Klesius PH. Effect of iron supplementation to cottonseed meal diets on the growth performance of channel catfish, Ictalurus punctatus. Journal of applied aquaculture. 2000;10(1):65-86.
14. Barros MM, Lim C, Klesius PH. Effect of soybean meal replacement by cottonseed meal and iron supplementation on growth, immune response and resistance of Channel Catfish (Ictalurus puctatus) to Edwardsiella ictaluri challenge. Aquaculture. 2002;207(3):263-79.
15. El-Saidy DMSD, Gaber MM. Use of cottonseed meal supplemented with iron for detoxification of gossypol as a total replacement of fish meal in Nile tilapia, Oreochromis niloticus (L.) diets. Aquac Res. 2004;35(9):859-65.
16. Lim S-J, Lee K-J. Partial replacement of fish meal by cottonseed meal and soybean meal with iron and phytase supplementation for parrot fish Oplegnathus fasciatus. Aquaculture. 2009;290(3):283-9.
17. Lim C, Sealey WM, Klesius PH. Iron methionine and iron sulfate as sources of dietary iron for channel catfish Ictalurus punctatus. J World Aquac Soc. 1996;27(3):290-6.
18. Chanda S, Paul B, Ghosh K, Giri S. Dietary essentiality of trace minerals in aquaculture-A Review. Agricultural reviews. 2015;36(2):100-12.
19. Sealey WM, Lim C, Klesius P. Influence of the dietary level of iron from iron methionine and iron sulfate on immune response and resistance of channel catfish to Edwardsiella ictaluri. J World Aquac Soc. 1997;28(2):142-9.
20. Qiao YG, Tan BP, Mai KS, Ai QH, Zhang WB, Xu W. Evaluation of iron methionine and iron sulphate as dietary iron sources for juvenile cobia (Rachycentron canadum). Aquacult Nutr. 2013;19(5):721-30.
21. Buyinza I, Lochmann R, Sinha AK, Thompson M, Romano N, Ramena G. Elevated concentrations of organic and inorganic forms of iron in plant-based diets for channel catfish prevent anemia but damage liver and intestine, respectively, without impacting growth performance. Fish Physiol Biochem. 2023;49(2):289-305.
22. Rigos G, Samartzis A, Henry M, Fountoulaki E, Cotou E, Sweetman J, et al. Effects of additive iron on growth, tissue distribution, haematology and immunology of gilthead sea bream, Sparus aurata. Aquac Int. 2010;18(6):1093-104.
23. Gaensly F, Picheth G, Brand D, Bonfim T. The uptake of different iron salts by the yeast Saccharomyces cerevisiae. Brazilian journal of microbiology. 2014;45:491-4.
24. Riemer J, Hoepken HH, Czerwinska H, Robinson SR, Dringen R. Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Anal Biochem. 2004;331(2):370-5.
25. Zargham D, Emtiazjoo M, Sahafi H, Bashti T, Razmi K. The effect of probiotic Saccharomyces cerevisiae strain: ptcc5052 on growth parameters and survival of rainbow trout (Oncorhynchus mykiss) larvae. Advances in environmental biology. 2011;5:1393-400.
26. AOAC. Official Methods of Analysis. 18th ed. Gaithersburg. MD, USA: AOAC International; 2005.
27. Hoseini SM, Taheri Mirghaed A, Ghelichpour M, Pagheh E, Iri Y, Abdolvahhab K. Effects of dietary tryptophan supplementation and stocking density on growth performance and stress responses in rainbow trout (Oncorhynchus mykiss). Aquaculture. 2020;519:734908.
28. Agh N, Jasour MS, Noori F. Potential development of value-added fishery products in underutilized and commercial fish species: Comparative study of lipid quality indicators. Journal of the American oil chemists' society. 2014;91(7):1171-7.
29. Ghelichpour M, Taheri Mirghaed A, Hoseini SM, Perez Jimenez A. Plasma antioxidant and hepatic enzymes activity, thyroid hormones alterations and health status of liver tissue in common carp (Cyprinus carpio) exposed to lufenuron. Aquaculture. 2020;516:734634.
30. Hoseini SM, Sinha R, Fazel A, Khosraviani K, Hosseinpour Delavar F, Arghideh M, et al. Histopathological damage and stress- and immune-related genes' expression in the intestine of common carp, Cyprinus carpio exposed to copper and polyvinyl chloride microparticle. Journal of experimental zoology part A: ecological and integrative physiology. 2022;337(2):181-90.
31. Byun R, Nadkarni MA, Chhour K-L, Martin FE, Jacques NA, Hunter N. Quantitative analysis of diverse Lactobacillus species present in advanced dental caries. J Clin Microbiol. 2004;42(7):3128-36.
32. Bastardo A, Ravelo C, Romalde JL. Highly sensitive detection and quantification of the pathogen Yersinia ruckeri in fish tissues by using real-time PCR. Appl Microbiol Biotechnol. 2012;96(2):511-20.
33. Torres-Corral Y, Santos Y. Development of a real-time PCR assay for detection and quantification of Streptococcus iniae using the lactate permease gene. J Fish Dis. 2021;44(1):53-61.
34. Tall A, Teillon A, Boisset C, Delesmont R, Touron-Bodilis A, Hervio-Heath D. Real-time PCR optimization to identify environmental Vibrio spp. strains. J Appl Microbiol. 2012;113(2):361-72.
35. Yu C-P, Farrell SK, Robinson B, Chu K-H. Development and application of real-time PCR assays for quantifying total and aerolysin gene-containing Aeromonas in source, intermediate, and finished drinking water. Environ Sci Technol. 2008;42(4):1191-200.
36. Kesmen Z, Özbekar E, Büyükkiraz M. Multifragment melting analysis of yeast species isolated from spoiled fruits. J Appl Microbiol. 2018;124(2):522-34.
37. Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C, Jones R, et al. Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microbiol. 2007;73(21):7059-66.
38. Hoseini SM, Yousefi M, Afzali-Kordmahalleh A, Pagheh E, Taheri Mirghaed A. Effects of dietary lactic acid supplementation on the activity of digestive and antioxidant enzymes, gene expressions, and bacterial communities in the intestine of common carp, Cyprinus carpio. Animals [Internet]. 2023; 13(12):[1934 p.].
39. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402-8.
40. Luo L, Xue M, Wu X, Cai X, Cao H, Liang Y. Partial or total replacement of fishmeal by solvent-extracted cottonseed meal in diets for juvenile rainbow trout (Oncorhynchus mykiss). Aquacult Nutr. 2006;12(6):418-24.
41. Cheng ZJ, Hardy RW. Apparent digestibility coefficients and nutritional value of cottonseed meal for rainbow trout (Oncorhynchus mykiss). Aquaculture. 2002;212(1):361-72.
42. Barton BA. Stress in fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol. 2002;42(3):517-25.
43. Deal CK, Volkoff H. The role of the thyroid axis in fish. Front Endocrinol (Lausanne). 2020;11:596585-.
44. Hoseini SM, Yousefi M, Rajabiesterabadi H, Paktinat M. Effect of short‐term (0–72 h) fasting on serum biochemical characteristics in rainbow trout Oncorhynchus mykiss. Journal of applied ichthyology. 2014;30(3):569-73.
45. Hoseini SM, Hedayati A, Ghelichpour M. Plasma metabolites, ions and thyroid hormones levels, and hepatic enzymes׳ activity in Caspian roach (Rutilus rutilus caspicus) exposed to waterborne manganese. Ecotoxicol Environ Saf. 2014;107(0):84-9.
46. Su J, Hou H, Wang C, Luo Y. Effects of replacing soybean meal with cottonseed meal on growth, muscle amino acids, and hematology of juvenile common carp, Cyprinus carpio. Aquac Int. 2019;27(2):555-66.
47. Wang Ca, Zhao Z, Lu S, Liu Y, Han S, Jiang H, et al. Physiological, nutritional and transcriptomic responses of sturgeon (Acipenser schrenckii) to complete substitution of fishmeal with cottonseed protein concentrate in aquafeed. Biology [Internet]. 2023; 12(4):[490 p.].
48. Sutthi N, Thaimuangphol W. Effects of yeast (Saccharomyces cerevisiae) on growth performances, body composition and blood chemistry of Nile tilapia (Oreochromis niloticus Linnaeus, 1758) under different salinity conditions. Iranian journal of fisheries sciences. 2020;19(3):1428-46.
49. Hoseinifar SH, Mirvaghefi A, Merrifield DL. The effects of dietary inactive brewer's yeast Saccharomyces cerevisiae var. ellipsoideus on the growth, physiological responses and gut microbiota of juvenile beluga (Huso huso). Aquaculture. 2011;318(1):90-4.
50. Chen G, Yin B, Liu H, Tan B, Dong X, Yang Q, et al. Effects of fishmeal replacement with cottonseed protein concentrate on growth, digestive proteinase, intestinal morphology and microflora in pearl gentian grouper (♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatu). Aquac Res. 2020;51(7):2870-84.
51. Xia R, Hao Q, Xie Y, Zhang Q, Ran C, Yang Y, et al. Effects of dietary Saccharomyces cerevisiae on growth, intestinal and liver health, intestinal microbiota and disease resistance of channel catfish (Ictalurus punctatus). Aquaculture reports. 2022;24:101157.
52. El-Bab AFF, Saghir SAM, El-Naser IA, El-Kheir SMMA, Abdel-Kader MF, Alruhaimi RS, et al. The effect of dietary Saccharomyces cerevisiae on growth performance, oxidative status, and immune response of sea bream (Sparus aurata). Life [Internet]. 2022; 12(7):[1013 p.].
53. Batista S, Medina A, Pires MA, Moriñigo MA, Sansuwan K, Fernandes JMO, et al. Innate immune response, intestinal morphology and microbiota changes in Senegalese sole fed plant protein diets with probiotics or autolysed yeast. Appl Microbiol Biotechnol. 2016;100(16):7223-38.
54. Opiyo MA, Jumbe J, Ngugi CC, Charo-Karisa H. Dietary administration of probiotics modulates non-specific immunity and gut microbiota of Nile tilapia (Oreochromis niloticus) cultured in low input ponds. International journal of veterinary science and medicine. 2019;7(1):1-9.
55. Medina-Félix D, Garibay-Valdez E, Vargas-Albores F, Martínez-Porchas M. Fish disease and intestinal microbiota: A close and indivisible relationship. Rev Aquacult. 2023;15(2):820-39.