Volume 7, Issue 2 (2018)                   JFST 2018, 7(2): 117-123 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sotoudeh E, Naserifard I, Oujifard A, Morshedi V. Influences of Different Water Temperatures on Growth Performance, Biochemical Body Composition, and Hematological Indices of Asian Sea Bass. JFST 2018; 7 (2) :117-123
URL: http://jfst.modares.ac.ir/article-6-17023-en.html
1- Fisheries Department, Agriculture & Natural Resources Faculty, Persian Gulf University, Bushehr, Iran , E.sotoudeh@pgu.ac.ir
2- Fisheries Department, Agriculture & Natural Resources Faculty, Persian Gulf University, Bushehr, Iran
3- Persian Gulf Research Center, Persian Gulf University, Bushehr, Iran
Abstract:   (6741 Views)
Aims: In recent years, marine fish farming has been one of the most important aquaculture activities in tropical regions, and their cultivation has grown considerably in most parts of the world. Thus, this study aimed at investigating the effects of different water temperatures on growth performance, biochemical body composition, and hematological indices of Asian sea bass (Lates calcarifer).
Materials and Methods: In the present experimental study, 3 temperature treatments, including 20, 27, and 33°C with 3 replications for 6 weeks were run on 8 sea bass fish, which were randomly transported to 500 liter tanks and fish feeding was done, using commercial concentrate food. At the end of the experiment, the growth performance, hematological indices, and biochemical body composition of the fish were measured. The data were analyzed by SPSS 18 software, using one-way ANOVA and Duncan tests.
Findings: The final weight of the fish reared in 27°C was significantly higher than the other 2 treatments. Specific growth rate, weight gain, feed intake, and protein efficiency ratio of 27 and 33°C were significantly higher than 20°C group. Hematological parameters did not show significant differences. Among the hematological biochemical compositions, glucose and cholesterol were significantly affected by temperature. The activity of liver enzymes in the reared fish plasma and the biochemical body composition of the fish (fat, protein, ash, and moisture) were not significantly different.
Conclusion: The temperatures of 27 and 33°C are suitable for Asian sea bass farming in sea water. Hematological indices and chemical body composition of the fish are not affected by different temperatures.
Full-Text [PDF 456 kb]   (2401 Downloads)    
Article Type: Research Article | Subject: fish and shellfish physiology
Received: 2017/10/15 | Published: 2018/08/14

References
1. Vu S, Ueng, P. Impact of water temperature on growth in cobia, Rachycentron canadum, cultured in cages. Isr J Aquac Bamidgeh. 2007;59(1):47-51. [Link]
2. Handeland, SO, Imsland AK, Stefansson SO. The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture. 2008;283(1-4):36-42. [Link] [DOI:10.1016/j.aquaculture.2008.06.042]
3. Kaya Gokcek C, Mazlum Y, Akyurt I. Effect of feeding frequency on the growth and survival of Himri Barbel Barbus luteus (Heckel, 1843), fry under laboratory conditions. Pak J Nutr. 2008;7(1):66-9. [Link] [DOI:10.3923/pjn.2008.66.69]
4. Vieira VLA, Johnston IA. Muscle development in the tambaqui, an important Amazonian food fish. J Fish Biol. 1996;49(5):842-53. [Link] [DOI:10.1111/j.1095-8649.1996.tb00083.x]
5. Jobling M. Temperature and growth: Modulation of growth rate via temperature change. In: Wood CM, McDonald DG, editors. Global Warming: Implications for freshwater and marine fish(society for experimental biology seminar series). Cambridge University Press: Cambridge; 1997. p.225–53. [Link] [DOI:10.1017/CBO9780511983375.010]
6. Marshall WS. Na+, Cl−, Ca2+ and Zn2+ transport by fish gills: Retrospective review and prospective synthesis. J Exp Zool. 2002;293(3):264-83. [Link] [DOI:10.1002/jez.10127]
7. Brett J. Environmental factors and growth. Fish physiol.1979;8:599-675. [Link] [DOI:10.1016/S1546-5098(08)60033-3]
8. Katersky RS, Carter CG. A preliminary study on growth and protein synthesis of juvenile barramundi, Lates calcarifer at different temperatures. Aquac. 2007; 267(1–4):157-64. [Link] [DOI:10.1016/j.aquaculture.2007.02.043]
9. Greenwood, PH. A review of the family Centropomidae (Pisces, Perciformes), Bulletin of the British Museum. London: British Museum (Natural History); 1976. p.181. [Link]
10. Tian X, Qin, JG. A single phase of food deprivation provoked compensatory growth in barramundi Lates calcarifer. Aquaculture. 2003;224(1-4):169-79. [Link] [DOI:10.1016/S0044-8486(03)00224-2]
11. Boonyaratpalin M, Suraneiranat P, Tunpibal T. 1998. Replacement of fish meal with various types of soybean products in diets for the Asian seabass, Lates calcarifer. Aquaculture. 161(1-4):67-78. [Link] [DOI:10.1016/S0044-8486(97)00257-3]
12. Sotoudeh E, Abedian Kenari A, Khodabandeh S, Khajeh K. Combination effects of dietary EPA and DHA plus alpha‐tocopherol: effects on performance and physiological status of Caspian brown trout (Salmo trutta caspius) fry. Aquacu Nutr. 2016;22(5):1101-15. [Link] [DOI:10.1111/anu.12361]
13. Blaxhall PC, Daisley KW. Routine haematological methods for use with fish blood. J Fish Biol. 1973;5(6):771-81. [Link] [DOI:10.1111/j.1095-8649.1973.tb04510.x]
14. Řehulka J. Influence of astaxanthin on growth rate, condition, and some blood indices of rainbow trout, Oncorhynchus mykiss. Aquaculture. 2000;190(1-2):27-47. [Link] [DOI:10.1016/S0044-8486(00)00383-5]
15. AOAC International. Official methods of analysis of AOAC International. Horwitz W, Latimer G, editors. 18th Edition. Gaithersburg: AOAC International; 2010. [Link]
16. Katersky RS, Carter CG. Growth efficiency of juvenile barramundi, Lates calcarifer, at high temperatures. Aquac. 2005;250(3-4):775-80. [Link] [DOI:10.1016/j.aquaculture.2005.05.008]
17. Qiang J, Yang H, Wang H, Kpundeh MD, Xu P. Growth and IGF-I response of juvenile Nile tilapia (Oreochromis niloticus) to changes in water temperature and dietary protein level. J Therm Biol. 2012;37(8):686-95. [Link] [DOI:10.1016/j.jtherbio.2012.07.009]
18. Kaushik SJ. Nutritional bioenergetics and estimation of waste production in non-salmonids. Aquat Living Resour. 1998;11(4):211-17. [Link] [DOI:10.1016/S0990-7440(98)89003-7]
19. Lupatsch I, Kissil GWM, Sklan D. Comparison of energy and protein efficiency among three fish species gilthead sea bream (Sparus aurata), European sea bass (Dicentrarchus labrax) and white grouper (Epinephelus aeneus): energy expenditure for protein and lipid deposition. Aquaculture. 2003;225(1-4):175-89. [Link] [DOI:10.1016/S0044-8486(03)00288-6]
20. Lupatsch I, Kissil GW, Sklan D. Optimization of feeding regimes for European sea bass Dicentrarchus labrax: A factorial approach. Aquaculture. 2001;202(3-4):289-302. [Link] [DOI:10.1016/S0044-8486(01)00779-7]
21. Bendiksen EA, Berg OK, Jobling M, Arnesen AM, Måsøval K. Digestibility, growth and nutrient utilisation of Atlantic salmon parr (Salmo salar L.) in relation to temperature, feed fat content and oil source. Aquaculture. 2003;224(1-4), 283-99. [Link] [DOI:10.1016/S0044-8486(03)00218-7]
22. Cui Y, Wootton RJ. Bioenergetics of growth of a cyprinid, Phoxinus phoxinus (L.): the effect of ration and temperature on growth rate and efficiency. J Fish Biol. 1988;33(5):763-73. [Link] [DOI:10.1111/j.1095-8649.1988.tb05521.x]
23. Koskela J, Pirhonen J, Jobling M. Feed intake, growth rate and body composition of juvenile Baltic salmon exposed to different constant temperatures. Aquac International. 1997;5(4):351-60. [Link] [DOI:10.1023/A:1018316224253]
24. Tidwell JH, Coyle SD, Anne Bright L, Van Arnum A, Yasharian D. Effect of water temperature on growth, survival, and biochemical composition of largemouth bass Micropterus salmoides. J World Aquacu Soc. 2007;34(2), 175-83. [Link] [DOI:10.1111/j.1749-7345.2003.tb00054.x]
25. Enayat Gholampour T, Imanpour M, Shabanpour B. Effects of temperature on growth, health, feeding, carcass composition and blood parameters of white fish (Rutilus frisii kutum kamenskii, 1901). Journal of Marine Science and Technology. 2010;8(3-4):58-66. [Link]
26. Wang N, Xu X, Kestemont P. Effect of temperature and feeding frequency on growth performances, feed efficiency and body composition of pikeperch juveniles (Sander lucioperca). Aquacu. 2009;289(1):70-3. [Link] [DOI:10.1016/j.aquaculture.2009.01.002]
27. Roche H, Bogé G. Fish blood parameters as a potential tool for identification of stress caused by environmental factors and chemical intoxication. Mar Environ Res. 1996;41(1):27-43. [Link] [DOI:10.1016/0141-1136(95)00015-1]
28. Kardel F, Omidzahir Sh, Mirzapoor M, Akhundian M. Study of blood and serum parameters of golden gray mullet (Liza aurata) in Caspian Sea. Vet Res Biol Prod. 2016;29(2): 88-96. [Link]
29. Winton JR. Fish health management, In: Wedemeyer, G, editor. Fish hatchery management. 2nd Edition. Wallingford: Cabi Pub; 2002. pp. 559–640. [Link]
30. Cameron JN. The influence of environmental variables on the hematology of Pinfish (Lagodon rhomboides) and Striped mullet (Mugil cephalus). Comp Biochem Physiol. 1970;32(2):175-92. [Link] [DOI:10.1016/0010-406X(70)90932-1]
31. Kita J, Itazawa Y. Release of erythrocytes from the spleen during exercise and splenic constriction by adrenaline infusion in the rainbow trout. Jpn J Ichthyol. 1989;36(1):48-52. [Link]
32. PagÉes T, Gómez E, Sú-er O, Viscor G, Tort L. Effects of daily management stress on haematology and blood rheology of the gilthead seabream. J Fish Biol. 1995;46(5):775-86. [Link] [DOI:10.1111/j.1095-8649.1995.tb01601.x]
33. Thomas MB, Thomas W, Hornstein T, Hedman S. Seasonal leukocyte and erythrocyte counts in fathead minnows. J Fish BioL.1999;54(5), 1116-8. [Link] [DOI:10.1111/j.1095-8649.1999.tb00862.x]
34. Ayalogu OE, Igboh NM, Dede EB. Biochemical changes in the serum and liver of albino rates exposed to petroleum samples (gasoline, kerosene, and crude Petroleum). J Appl Sci Environ Manag. 2001;5(1):97-100. [Link]
35. Parma MJ, Loteste A, Campana M, Bacchetta C. Changes of hematological parameters in Prochilodus lineatus (Pisces, Prochilodontidae) exposed to sublethal concentration of cypermethrin. J Environ Biol. 2007;28(1):147-9. [Link]
36. Lermen CL, Lappe R, Crestani M, Vieira VP, Gioda CR, Schetinger M.R.C, et al. Effect of different temperature regimes on metabolic and blood parameters of silver catfish Rhamdia quelen. Aquaculture. 2004;239(1-4):497–507. [Link] [DOI:10.1016/j.aquaculture.2004.06.021]
37. Riche M. Analysis of refractometry for determining total plasma protein in hybrid striped bass (Morone chrysops×M. saxatilis) at various salinities. Aquaculture. 2007;264(1-4):279-84. [Link] [DOI:10.1016/j.aquaculture.2006.12.018]
38. Kumar S, Sahu NP, Pal AK, Choudhury D, Yengkokpam S, Mukherjee SC. Efffect of dietary carbohydrate on heamatology, respirator burst activity and histological changes in L. rohita juveniles. Fish Shellfish Immunol. 2005;19(4):331-4. [Link] [DOI:10.1016/j.fsi.2005.03.001]
39. Mesbah M, Khajeh Gh, Sabzevarizadeh M, Izadkhasti Z. Evaluation of some serum biochemical parameters of culturing Shirboat (Barbus grypus) during two warm and cool seasons in Khuzestan province. Iran Vet J. 2012;8(3):60-6. [Link]
40. Poet TS, Wu H, Kousba AA, Timchalk C. In vitro rat hepatic and intestinal metabolism of the organophosphate pesticides Chlorpyrifos and diazinon. Toxicol Sci. 2003;72(2):193-200. [Link] [DOI:10.1093/toxsci/kfg035]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.