Volume 7, Issue 2 (2018)                   JFST 2018, 7(2): 145-155 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghelichi S, Shabanpour B, Pourashouri P. Proximate and Amino Acid Composition, Antioxidant Properties, ACE Inhibitory Effect, and Antibacterial Power of Protein Hydrolysates of Common Carp Roe by Alcalase. JFST 2018; 7 (2) :145-155
URL: http://jfst.modares.ac.ir/article-6-14589-en.html
1- Seafood Science & Technology Department, Fisheries & Environmental Science Faculty, Gorgan University of Agricultural Sciences & Natural Resources, Gorgan, Iran
2- Seafood Science & Technology Department, Fisheries & Environmental Science Faculty, Gorgan University of Agricultural Sciences & Natural Resources, Gorgan, Iran , bshabanpour@yahoo.com
Abstract:   (9385 Views)
Aims: Fish egg has a high nutritional value and is known as an offshore product in the fish processing industry in Asia. Thus, the present study aimed at evaluating proximate and amino acid composition, antioxidant properties, ACE inhibitory effect, and antibacterial power of protein hydrolysates from lyophilized common carp roe by Alcalase.
Materials and Methods: In the present experimental study, the lyophilized roe was subjected to hydrolysis by Alcalase for 30, 60, 90, and 120 minutes at pH 8 and 55˚C. Fat, as well as moisture, ash and protein were measured by AOAC and amino acid composition by high-performance liquid chromatography-mass spectrometry. DPPH scavenging activity, metal ion chelating, ACE inhibitory effect and anti-bacterial power of the samples were analyzed. The data were analyzed by SPSS 21, using ANOVA and LSD tests. Antioxidant property of hydrolysates increased with their concentrations.
Findings: By increasing the hydrolysis time, protein content, protein recovery percentage, and ash content increased, but the amount of fat and moisture decreased. The most abundant amino acids in common carp roe and its protein hydrolysates were valine, lysine, arginine, and leucine. The antioxidant properties of the samples increased with increasing concentration. DPPH scavenging activity of hydrolysates at 20mg/ml was significantly higher than that of BHT solution (p<0.05). All the hydrolysates exhibited antioxidant, ACE inhibitory and antibacterial effects.
Conclusion: Due to the high content of protein, bioactive peptides, and essential and unnecessary amino acids, Common carp roe protein hydrolysates has a high antioxidant property, ACE inhibitory and antibacterial properties.
Full-Text [PDF 502 kb]   (3278 Downloads)    
Article Type: Research Article | Subject: fish and shellfish physiology
Received: 2017/05/3 | Published: 2018/08/14

References
1. Ennaas N, Hammami R, Beaulieu L, Fliss I. Purification and characterization of four antibacterial peptides from protamex hydrolysate of Atlantic mackerel (Scomber scombrus) by-products. Biochem Biophys Res Commun. 2015;462(3):195-200. [Link] [DOI:10.1016/j.bbrc.2015.04.091]
2. Chalamaiah M, Hemalatha R, Jyothirmayi T, Diwan PV, Bhaskarachary K, Vajreswari A, et al. Chemical composition and immunomodulatory effects of enzymatic protein hydrolysates from common carp (Cyprinus carpio) egg. Nutrition. 2015;31(2):388-98. [Link] [DOI:10.1016/j.nut.2014.08.006]
3. Villamil O, Váquiro H, Solanilla JF. Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties. Food Chem. 2017;224:160-71. [Link] [DOI:10.1016/j.foodchem.2016.12.057]
4. Aspmo SI, Horn SJ, Eijsink VGH. Hydrolysates from Atlantic cod (Gadus morhua L.) viscera as components of microbial growth media. Process Biochem. 2005;40(12):3714-22. [Link] [DOI:10.1016/j.procbio.2005.05.004]
5. Kechaou ES, Dumay J, Donnay-Moreno C, Jaouen P, Gouygou JP, Bergé JP, et al. Enzymatic hydrolysis of cuttlefish (Sepia officinalis) and sardine (Sardina pilchardus) viscera using commercial proteases: Effects on lipid distribution and amino acid composition. J Biosci Bioeng. 2009;107(2):158-64. [Link] [DOI:10.1016/j.jbiosc.2008.10.018]
6. Benhabiles MS, Abdi N, Drouiche N, Lounici H, Pauss A, Goosen MFA, et al. Fish protein hydrolysate production from sardine solid waste by crude pepsin enzymatic hydrolysis in a bioreactor coupled to an ultrafiltration unit. Mater Sci Eng, C. 2012;32(4):922-8. [Link] [DOI:10.1016/j.msec.2012.02.013]
7. Ramakrishnan VV, Ghaly AE, Brooks MS, Budge SM. Extraction of proteins from mackerel fish processing waste using Alcalase enzyme. Bioprocess Biotech. 2013;3:2. [Link]
8. Silva JFX, Ribeiro K, Silva JF, Cahú TB, Bezerra RS. Utilization of tilapia processing waste for the production of fish protein hydrolysate. Anim Feed Sci Technol. 2014;196:96-106. [Link] [DOI:10.1016/j.anifeedsci.2014.06.010]
9. Deraz SF. Protein hydrolysate from visceral waste proteins of bolti fish (Tilapia nilotica): Chemical and nutritional variations as affected by processing pHs and time of hydrolysis. J Aquat Food Prod Technol. 2015;24(6):614-31. [Link] [DOI:10.1080/10498850.2013.797534]
10. Younes I, Nasri R, Bkhairia I, Jellouli K, Nasri M. New proteases extracted from red scorpionfish (Scorpaena scrofa) viscera: Characterization and application as a detergent additive and for shrimp waste deproteinization. Food Bioprod Process. 2015;94:453-62. [Link] [DOI:10.1016/j.fbp.2014.06.003]
11. Cudennec B, Balti R, Ravallec R, Caron J, Bougatef A, Dhulster P, et al. In vitro evidence for gut hormone stimulation release and dipeptidyl-peptidase IV inhibitory activity of protein hydrolysate obtained from cuttlefish (Sepia officinalis) viscera. Food Res Int. 2015;78:238-45. [Link] [DOI:10.1016/j.foodres.2015.10.003]
12. Yanan Z, Li Z, Hua L, Wei S, Meilan Y. Effect of eel head protein hydrolysates on the denaturation of grass carp surimi during frozen storage. Procedia Eng. 2012;37:223-8. [Link] [DOI:10.1016/j.proeng.2012.04.231]
13. Ruthu, Murthy PS, Rai AK, Bhaskar N. Fermentative recovery of lipids and proteins from freshwater fish head waste with reference to antimicrobial and antioxidant properties of protein hydrolysate. J Food Sci Technol. 2014;51(9):1884-92. [Link] [DOI:10.1007/s13197-012-0730-z]
14. Chi CF, Wang B, Wang YM, Zhang B, Den SG. Isolation and characterization of three antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) heads. J Funct Foods. 2015;12:1-10. [Link] [DOI:10.1016/j.jff.2014.10.027]
15. Chi CF, Wang B, Wang YM, Zhang B, Deng SG. Isolation and characterization of three antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) heads. J Funct Foods. 2015;12:1-10. [Link] [DOI:10.1016/j.jff.2014.10.027]
16. García-Moreno PJ, Batista I, Pires C, Bandarra NM, Espejo-Carpio FJ, Guadix A, et al. Antioxidant activity of protein hydrolysates obtained from discarded Mediterranean fish species. Food Res Int. 2014;65(Part C):469-76. [Link] [DOI:10.1016/j.foodres.2014.03.061]
17. Nikoo M, Benjakul S, Xu X. Antioxidant and cryoprotective effects of Amur sturgeon skin gelatin hydrolysate in unwashed fish mince. Food Chem. 2015;181:295-303. [Link] [DOI:10.1016/j.foodchem.2015.02.095]
18. Prabha J, Vincent S, Joseph S, Magdalene J. Bioactive and functional properties of fish protein hydrolysate from Leiognathus bindus. Asian J Pharm Clin Res. 2016;9(5):277-81. [Link] [DOI:10.22159/ajpcr.2016.v9i5.14002]
19. Karakala B, Rao Pamidighantam P, Rao NG, Tummala J. Functional properties of roe protein hydrolysates from Catla catla. Electron J Environ Agric Food Chem. 2011;10(4):2139-47. [Link]
20. Yang JI, Tang JY, Liu YS, Wang HR, Lee SY, Yen CY, et al. Roe protein hydrolysates of giant grouper (Epinephelus lanceolatus) inhibit cell proliferation of oral cancer cells involving apoptosis and oxidative stress. BioMed Res Int. 2016;2016:8305073. [Link]
21. Chalamaiah M, Jyothirmayi T, Diwan PV, Dinesh Kumar B. Antiproliferative, ACE-inhibitory and functional properties of protein hydrolysates from rohu (Labeo rohita) roe (egg) prepared by gastrointestinal proteases. J Food Sci Technol. 2015;52(12):8300-7. [Link] [DOI:10.1007/s13197-015-1969-y]
22. García-Moreno PJ, Guadix A, Guadix EM, Jacobsen C. Physical and oxidative stability of fish oil-in-water emulsions stabilized with fish protein hydrolysates. Food Chem. 2016;203:124-35. [Link] [DOI:10.1016/j.foodchem.2016.02.073]
23. Naqash SY, Nazeer RA. Antioxidant and functional properties of protein hydrolysates from pink perch (Nemipterus japonicus) muscle. J Food Sci Technol. 2013;50(5):972-8. [Link] [DOI:10.1007/s13197-011-0416-y]
24. Shahidi F, Zhong Y. Measurement of antioxidant activity. J Funct Foods. 2015;18(Part B):757-81. [Link]
25. Je JY, Kim SY, Kim SK. Preparation and antioxidative activity of hoki frame protein hydrolysate using ultrafiltration membranes. Eur Food Res Technol. 2005;221(1-2):157-62. [Link] [DOI:10.1007/s00217-005-1142-3]
26. Chalamaiah M, Jyothirmayi T, Diwan PV, Dinesh Kumar B. Antioxidant activity and functional properties of enzymatic protein hydrolysates from common carp (Cyprinus carpio) roe (egg). J Food Sci Technol. 2015;52(9):5817-25. [Link] [DOI:10.1007/s13197-015-1714-6]
27. Rao GN, Rao Pamidighantam P, Akula S, Karakala B. Functional properties and in vitro antioxidant activity of roe protein hydrolysates of Channa striatus and Labeo rohita. Food Chem. 2012;135(3):1479-84. [Link] [DOI:10.1016/j.foodchem.2012.05.098]
28. Intarasirisawat R, Benjakul S, Visessanguan W, Wu J. Antioxidative and functional properties of protein hydrolysate from defatted skipjack (Katsuwonous pelamis) roe. Food Chem. 2012;135(4):3039-48. [Link] [DOI:10.1016/j.foodchem.2012.06.076]
29. Rao GN. Physico-chemical, functional and antioxidant properties of roe protein concentrates from Cyprinus carpio and Epinephelus tauvina. J Food Pharm Sci. 2014;2(1):15-22. [Link]
30. Jemil I, Jridi M, Nasri R, Ktari N, Rabeb Ben Slama-Ben Salem, Mehiri M, et al. Functional, antioxidant and antibacterial properties of protein hydrolysates prepared from fish meat fermented by Bacillus subtilis A26. Process Biochem. 2014;49(6):963-72. [Link] [DOI:10.1016/j.procbio.2014.03.004]
31. Sila A, Nedjar-Arroume N, Hedhili K, Chataigné G, Balti R, Nasri M, et al. Antibacterial peptides from barbel muscle protein hydrolysates: Activity against some pathogenic bacteria. LWT-Food Sci Technol. 2014;55(1):183-8. [Link] [DOI:10.1016/j.lwt.2013.07.021]
32. Tang W, Zhang H, Wang L, Qian H, Qi X. Targeted separation of antibacterial peptide from protein hydrolysate of anchovy cooking wastewater by equilibrium dialysis. Food Chem. 2015;168:115-23. [Link] [DOI:10.1016/j.foodchem.2014.07.027]
33. Wald M, Schwarz K, Rehbein H, Bußmann B, Beermann C. Detection of antibacterial activity of an enzymatic hydrolysate generated by processing rainbow trout by-products with trout pepsin. Food Chem. 2016;205:221-8. [Link] [DOI:10.1016/j.foodchem.2016.03.002]
34. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911-7. [Link] [DOI:10.1139/o59-099]
35. AOAC, AOAC International. Official Methods of Analysis of AOAC International. 18th Edition. Horwitz W, Latimer GV, editors. Arlington: AOAC International; 2006. [Link]
36. Hoyle NT, Merritt JH. Quality of fish protein hydrolysates from herring (Clupea harengus). J Food Sci. 1994;59(1):76-9. [Link] [DOI:10.1111/j.1365-2621.1994.tb06901.x]
37. Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem. 1992;40(6):945-8. [Link] [DOI:10.1021/jf00018a005]
38. Dinis TCP, Maderia VMC, Almeida LM. Action of phenolic derivatives (Acetaminophen, Salicylate, And 5-Aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys. 1994;315(1):161-9. [Link] [DOI:10.1006/abbi.1994.1485]
39. Cushman DW, Cheung HS. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol. 1971;20(7):1637-48. [Link] [DOI:10.1016/0006-2952(71)90292-9]
40. Berghe VA, Vlietinck AJ. Screening methods for antibacterial and antiviral agents from higher plants. In: Hostettmann K, editor. Methods in plant biochemistry: Assays for bioactivity. 6th Volume. Cambridge: Academic Press; 1991. pp. 47-68. [Link]
41. Ovissipour M, Abedian AM, Motamedzadegan A, Rasco B, Safari R, Shahiri H. The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera. Food Chem. 2009;115(1):238-42. [Link] [DOI:10.1016/j.foodchem.2008.12.013]
42. Chalamaiah M, Dinesh Kumar B, Hemalatha R, Jyothirmayi T. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chem. 2012;135(4):3020-38. [Link] [DOI:10.1016/j.foodchem.2012.06.100]
43. Nilsang S, Lertsiri S, Suphantharika M, Assavanig A. Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial proteases. J Food Eng. 2005;70(4):571-8. [Link] [DOI:10.1016/j.jfoodeng.2004.10.011]
44. Liaset B, Lied E, Espe M. Enzymatic hydrolysis of by‐products from the fish‐filleting industry; chemical characterisation and nutritional evaluation. J Sci Food Agric. 2000;80(5):581-9. https://doi.org/10.1002/(SICI)1097-0010(200004)80:5<581::AID-JSFA578>3.0.CO;2-I [Link] [DOI:10.1002/(SICI)1097-0010(200004)80:53.0.CO;2-I]
45. Bhaskar N, Benila T, Radha C, Lalitha RG. Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Bioresour Technol. 2008;99(2):335-43. [Link] [DOI:10.1016/j.biortech.2006.12.015]
46. Choi YJ, Hur S, Choi BD, Konno K, Park JW. Enzymatic hydrolysis of recovered protein from frozen small croaker and functional properties of its hydrolysates. J Food Sci. 2009;74(1):C17-24. 49- Klompong V, Benjakul S, Yachai M, Visessanguan W, Shahidi F, Hayes KD, et al. Amino acid composition and antioxidative peptides from protein hydrolysates of yellow stripe trevally (Selaroides leptolepis). J Food Sci. 2009;74(2):C126-33. [Link] [DOI:10.1111/j.1750-3841.2009.01047.x]
47. Morales-Medina R, Tamm F, Guadix AM, Guadix EM, Drusch S. Functional and antioxidant properties of hydrolysates of sardine (S. pilchardus) and horse mackerel (T. mediterraneus) for the microencapsulation of fish oil by spray-drying. Food chem. 2016;194:1208-16. [Link] [DOI:10.1016/j.foodchem.2015.08.122]
48. Wu G, Jaeger LA, Bazer FW, Rhoads JM. Arginine deficiency in preterm infants: Biochemical mechanisms and nutritional implications. J Nutr Biochem. 2004;15(8):442-51. [Link] [DOI:10.1016/j.jnutbio.2003.11.010]
49. Klompong V, Benjakul S, Kantachote D, Shahidi F. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem. 2007;102(4):1317-27. [Link] [DOI:10.1016/j.foodchem.2006.07.016]
50. Farvin KH, Lystbæk Andersen L, Hauch Nielsen H, Jacobsen C, Jakobsen G, Johansson I, et al. Antioxidant activity of Cod (Gadus morhua) protein hydrolysates: In vitro assays and evaluation in 5% fish oil-in-water emulsion. Food Chem. 2014;149:326-34. [Link] [DOI:10.1016/j.foodchem.2013.03.075]
51. Samaranayaka AGP, Li-Chan ECY. Autolysis-assisted production of fish protein hydrolysates with antioxidant properties from Pacific hake (Merluccius productus). Food chem. 2008;107(2):768-76. [Link] [DOI:10.1016/j.foodchem.2007.08.076]
52. Thiansilakul Y, Benjakul S, Shahidi F. Antioxidative activity of protein hydrolysate from round scad muscle using Alcalase and Flavourzyme. J Food Biochem. 2007;31(2):266-87. [Link] [DOI:10.1111/j.1745-4514.2007.00111.x]
53. Elias RJ, Kellerby SS, Decker EA. Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutr. 2008;48(5):430-41. [Link] [DOI:10.1080/10408390701425615]
54. Hmidet N, Balti R, Nasri R, Sila A, Bougatef A, Nasri M. Improvement of functional properties and antioxidant activities of cuttlefish (Sepia officinalis) muscle proteins hydrolyzed by Bacillus mojavensis A21 proteases. Food Res Int. 2011;44(9):2703-11. [Link] [DOI:10.1016/j.foodres.2011.05.023]
55. Vercruysse L, Van Camp J, Smagghe G. ACE inhibitory peptides derived from enzymatic hydrolysates of animal muscle protein: A review. J Agric Food Chem. 2005;53(21):8106-15. [Link] [DOI:10.1021/jf0508908]
56. Jamdar SN, Rajalakshmi V, Pednekar MD, Juan F, Yardi V, Sharma A. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chem. 2010;121(1):178-84. [Link] [DOI:10.1016/j.foodchem.2009.12.027]
57. Nasri R, Jridi M, Lassoued I, Jemil I, Rabeb Ben Slama-Ben Salem, Nasri M, et al. The influence of the extent of enzymatic hydrolysis on antioxidative properties and ACE-inhibitory activities of protein hydrolysates from goby (Zosterisessor ophiocephalus) muscle. Appl Biochem Biotechnol. 2014;173(5):1121-34. [Link] [DOI:10.1007/s12010-014-0905-3]
58. Nasri R, Jridi M, Lassoued I, Jemil I, Rabeb Ben Slama-Ben Salem, Nasri M, et al. The influence of the extent of enzymatic hydrolysis on antioxidative properties and ACE-inhibitory activities of protein hydrolysates from goby (Zosterisessor ophiocephalus) muscle. Appl Biochem Biotechnol. 2014;173(5):1121-34. [Link] [DOI:10.1007/s12010-014-0905-3]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.