1- Wang, L., Auty, M. A., & Kerry, J. P. (2010). Physical assessment of composite biodegradable films manufactured using whey protein isolate, gelatin and sodium alginate. Journal of Food Engineering, 96(2), 199-207.
2- Emiroğlu, Z. K., Yemiş, G. P., Coşkun, B. K., &Candoğan, K. (2010). Antimicrobial activity of soy edible films incorporated with thyme and oregano essential oils on fresh ground beef patties. Meat science, 86(2), 283-288.
3- Ghaderi, J., Hosseini, S. F., & Gómez-Guillén, M. C. (2020). Effect of biodegradable films based on chitosan/polyvinyl alcohol/fish gelatin incorporated with cinnamaldehyde on shelf-life extension of rainbow trout (Oncorhynchusmykiss) fillets. Innovative Food Technologies, 7(2), 223-242.
4- Martin, O., Schwach, E., Avrous, L., & Couturier, Y. (2001). Properties of biodegradable multilayer films based on plasticized wheat starch. Starch‐Stärke, 53(8), 372-380.
5- Fu, Z. Q., Wang, L. J., Li, D., Wei, Q., &Adhikari, B. (2011). Effects of high-pressure homogenization on the properties of starch-plasticizer dispersions and their films. Carbohydrate Polymers, 86(1), 202-207.
6- Arora, A. and Padua, G.W., 2010. Nanocomposites in food packaging. Journal of Food science, 75(1), pp.R43-R49.
7- Rhim, J.W., Hong, S.I., Park, H.M. and Ng, P.K., 2006. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. Journal of agricultural and food chemistry, 54(16), pp.5814-5822.
8- Hu, B., Ting, Y., Yang, X., Tang, W., Zeng, X., & Huang, Q. (2012). Nanochemoprevention by encapsulation of (−)-epigallocatechin-3-gallate with bioactive peptides/chitosan nanoparticles for enhancement of its bioavailability. Chemical Communications, 48(18), 2421-2423.
9- Tripathi, S., Mehrotra, G. K., & Dutta, P. K. (2010). Preparation and physicochemical evaluation of chitosan/poly (vinyl alcohol)/pectin ternary film for food-packaging applications. Carbohydrate polymers, 79(3), 711-716.
10- Ghaderi, J., Hosseini, S.F., Keyvani, N. and Gómez-Guillén, M.C., 2019. Polymer blending effects on the physicochemical and structural features of the chitosan/poly (vinyl alcohol)/fish gelatin ternary biodegradable films. Food Hydrocolloids, 95, pp.122-132.
11- Ruan, C., Zhang, Y., Wang, J., Sun, Y., GAO, X., Xiong, G., & Liang, J. (2019). Preparation and antioxidant activity of sodium alginate and carboxymethyl cellulose edible films with epigallocatechingallate. Int. J. Biol. Macromol., 134, 1038-1044.
12- Ghaderi, J., Hosseini, S. F., Shabazadeh, I., & Gómez-Guillén, M. C. (2021). Fabrication and characterization of biocomposite films based on carboxymethyl cellulose/polyvinyl alcohol/fish gelatin for food packaging exploits. Innovative Food Technologies, 8(3), 383-398.
13- ASTM. (2005). Standard test method for water vapor transmission of materials (E96-05). In Annual Book of ASTM Standards. American Society for Testing Materials, Philadelphia, PA.
14- Mohajer, S., Rezaei, M., &Hosseini, S. F. (2017). Physico-chemical and microstructural properties of fish gelatin/agar bio-based blend films. Carbohydr. Polym.,157, 784-793.
15- Hosseini, S. F., Ghaderi, J., & Gómez-Guillén, M. C. (2022). Tailoring physico-mechanical and antimicrobial/antioxidant properties of biopolymeric films by cinnamaldehyde-loaded chitosan nanoparticles and their application in packaging of fresh rainbow trout fillets. Food Hydrocolloids, 124, 107249.
16- ASTM (2002). Standard Test Method for Tensile Properties of Thin Plastic Sheeting. Annual Book of ASTM Standards. Designation D882-02. Philadelphia: American Society for Testing Materials.
17- Zhang, M., Li, X. H., Gong, Y. D., Zhao, N. M., & Zhang, X. F. (2002). Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials, 23(13), 2641-2648.
18- Mano, J. F., Koniarova, D., & Reis, R. L. (2003). Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. Journal of materials science: Materials in medicine, 14(2), 127-135.
19- Meenakshi, P., Noorjahan, S. E., Rajini, R., Venkateswarlu, U., Rose, C., &Sastry, T. P. (2002). Mechanical and microstructure studies on the modification of CA film by blending with PS. Bulletin of Materials Science, 25, 25-29.
20- Rezaei, F. T. M., Aryaee, P., &Abdullahi, M. (2016). Evaluation of some physical and mechanical properties of carboxymethyl cellulose/Tragacanth edible film.
21- Rezaie, A., Rezaei, M., &Albooftileh, M. (2021). Preparation of biodegradable carboxymethyl cellulose-Arabic gum composite film and evaluation of its physical, mechanical and thermal properties. Iranian Food Science and Technology Research Journal, 17(2), 287-297.
22- Ojagh, S. M., Rezaei, M., Razavi, S. H., &Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food chemistry, 122(1), 161-166.
23- Rhim, J. W., Wang, L. F., & Hong, S. I. (2013). Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocoll.,33(2), 327-335.
24- Gómez-Estaca, J., De Lacey, A. L., López-Caballero, M. E., Gómez-Guillén, M. C., & Montero, P. (2010). Biodegradable gelatin–chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol.27(7), 889-896.
25- Park, S. I., & Zhao, Y. (2004). Incorporation of a high concentration of mineral or vitamin into chitosan-based films. Journal of agricultural and food chemistry, 52(7), 1933-1939.
26- Azadbakht, E., Maghsoudlou, Y., Khomeiri, M., &Kashiri, M. (2017). Evaluation of physicomechanical, antimicrobial and microstructural properties of chitosan bioactive films containing Eucalyptus globulus essential oil. Innovative Food Technologies, 4(3), 119-132.
27- Cazón, P., Vázquez, M., & Velazquez, G. (2018). Novel composite films based on cellulose reinforced with chitosan and polyvinyl alcohol: Effect on mechanical properties and water vapour permeability. Polym. Test., 69, 536-544.
28- Ghasemlou, M., Khodaiyan, F., &Oromiehie, A. (2011). Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydr. Polym.,84(1), 477-483.
29- Ojagh, S. M., Shariatmadari, F., Adeli, A., Kordjozi, M., &Abdolahi, M. (2017). Development composite films based chitosan-Katira and evaluation physical and mechanical properties. Innovative Food Technologies, 4, 151-161.
30- Ghanbarzadeh, B., Almasi, H., &Entezami, A. A. (2011). Improving the barrier and mechanical properties of corn starch-based edible films: Effect of citric acid and carboxymethyl cellulose. Industrial Crops and products, 33(1), 229-235.
31- Almasi, H., Ghanbarzadeh, B., &Entezami, A. A. (2010). Physicochemical properties of starch–CMC–nanoclay biodegradable films. Int. J. Biol. Macromol., 46(1), 1-5.
32- Shojaee-Aliabadi, S., Hosseini, H., Mohammadifar, M.A., Mohammadi, A., Ghasemlou, M., Hosseini, S.M. and Khaksar, R., 2014. Characterization of κ-carrageenan films incorporated plant essential oils with improved antimicrobial activity. Carbohydrate polymers, 101, pp.582-591.