[1] FAO., 2022. The State of the World Fisheries and Aquaculture. FAO fisheries and aquaculture Department, Rome.
[2] Krogdahl, A., Penn, M., Thorsen, J., Refstie, S., Bakke, A.M., 2010. Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquaculture Research. 41(3), 333-344.
[3] Woodgate, S.L., Wan, A.H., Hartnett, F., Wilkinson, R.G., Davies, S.J., 2022. The utilisation of European processed animal proteins as safe, sustainable and circular ingredients for global aquafeeds. Reviews in Aquaculture. 14(3), 1572-1596.
[4] Knudsen, D., Jutfelt, F., Sundh, H., Sundell, K., Koppe, W., Frøkiær, H., 2008. Dietary soya saponins increase gut permeability and play a key role in the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.). British Journal of Nutrition. 100(1), 120-129.
[5] Øverland, M., Karlsson, A., Mydland, L.T., Romarheim, O.H., Skrede, A., 2013. Evaluation of Candida utilis, Kluyveromyces marxianus and Saccharomyces cerevisiae yeasts as protein sources in diets for Atlantic salmon (Salmo salar). Aquaculture. 402, 1-7.
[6] Vidakovic, A., Langeland, M., Sundh, H., Sundell, K., Olstorpe, M., Vielma, J., Kiessling, A., Lundh, T., 2016. Evaluation of growth performance and intestinal barrier function in Arctic Charr (Salvelinus alpinus) fed yeast (Saccharomyces cerevisiae), fungi (Rhizopus oryzae) and blue mussel (Mytilus edulis). Aquaculture nutrition. 22(6), 1348-1360.
[7] Langeland, M., Vidakovic, A., Vielma, J., Lindberg, J.E., Kiessling, A., Lundh, T., 2016. Digestibility of microbial and mussel meal for Arctic charr (Salvelinus alpinus) and Eurasian perch (Perca fluviatilis). Aquaculture nutrition. 22(2), 485-495.
[8] Marchi, A., Bonaldo, A., Scicchitano, D., Candela, M., De Marco, A., Falciglia, S., Mazzoni, M., Lattanzio, G., Clavenzani, P., Dondi, F., Gatta, P.P., 2023. Feeding gilthead sea bream with increasing dietary bacterial single cell protein level: Implication on growth, plasma biochemistry, gut histology, and gut microbiota. Aquaculture. 565, 739132.
[9] Sharif, M., Zafar, M.H., Aqib, A.I., Saeed, M., Farag, M.R., Alagawany, M., 2021. Single cell protein: Sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture. 531, 735885.
[10] Aruna, T.E., Aworh, O.C., Raji, A.O., Olagunju, A.I., 2017. Protein enrichment of yam peels by fermentation with Saccharomyces cerevisiae (BY4743). Annals of Agricultural Sciences. 62(1), 33-37.
[11] Jones, S.W., Karpol, A., Friedman, S., Maru, B.T., Tracy, B.P., 2020. Recent advances in single cell protein use as a feed ingredient in aquaculture. Current opinion in biotechnology. 61, 189-197.
[12] Delamare-Deboutteville, J., Batstone, D.J., Kawasaki, M., Stegman, S., Salini, M., Tabrett, S., Smullen, R., Barnes, A.C., Hülsen, T., 2019. Mixed culture purple phototrophic bacteria is an effective fishmeal replacement in aquaculture. Water research X. 4, 100031.
[13] Guo, J., Qiu, X., Salze, G., Davis, D.A., 2019. Use of high‐protein brewer’s yeast products in practical diets for the Pacific white shrimp Litopenaeus vannamei. Aquaculture Nutrition. 25(3), 680-690.
[14] Aas, T.S., Grisdale-Helland, B., Terjesen, B.F., Helland, S.J., 2006. Improved growth and nutrient utilisation in Atlantic salmon (Salmo salar) fed diets containing a bacterial protein meal. Aquaculture. 259(1-4), 365-376.
[15] Hardy, R.W., Patro, B., Pujol‐Baxley, C., Marx, C.J., Feinberg, L., 2018. Partial replacement of soybean meal with Methylobacterium extorquens single‐cell protein in feeds for rainbow trout (Oncorhynchus mykiss Walbaum). Aquaculture Research. 49(6), 2218-2224.
[16] Smárason, B.Ö., Alriksson, B., Jóhannsson, R., 2019. Safe and sustainable protein sources from the forest industry–The case of fish feed. Trends in Food Science & Technology. 84, 2-14.
[17] Biswas, A., Takakuwa, F., Yamada, S., Matsuda, A., Saville, R.M., LeBlanc, A., Silverman, J.A., Sato, N., Tanaka, H., 2020. Methanotroph (Methylococcus capsulatus, Bath) bacteria meal as an alternative protein source for Japanese yellowtail, Seriola quinqueradiata. Aquaculture. 529, 735700.
[18] Adeoye, A.A., Akegbejo-Samsons, Y., Fawole, F.J., Olatunji, P.O., Muller, N., Wan, A.H., Davies, S.J., 2021. From waste to feed: Dietary utilisation of bacterial protein from fermentation of agricultural wastes in African catfish (Clarias gariepinus) production and health. Aquaculture. 531, 735850.
[19] Rumsey, G.L., Winfree, R.A. and Hughes, S.G., 1992. Nutritional value of dietary nucleic acids and purine bases to rainbow trout (Oncorhynchus mykiss). Aquaculture. 108(1-2), 97-110.
[20] Trejo‐Escamilla, I., Galaviz, M.A., Flores‐Ibarra, M., Alvarez Gonzalez, C.A., López, L.M., 2017. Replacement of fishmeal by soya protein concentrate in the diets of Totoaba macdonaldi (Gilbert, 1890) juveniles: effect on the growth performance, in vitro digestibility, digestive enzymes and the haematological and biochemistry parameters. Aquaculture Research. 48(8), 4038-4057.
[21] Iranian fisheries organization, 2021. Statistical year book. Tehran, 29 p.
[22] NRC (National Research Council)., 2011. Nutrient Requirements of Fish. National Academy Press, Washington DC, USA.
[23] Zamani, A., Hajimoradlo, A., Madani, R., Johari, A., Kalbasi, M., Farhangi, M., 2006. Comparison of digestive enzyme activity in the stomach, pyloric caeca and intestine in diploid and triploid female of rainbow trout (Oncorhynchus mykiss). Iranian Scientific Fisheries Journal. 15(2), 29-36.
[24] Hamza, N., Mhetli, M., Khemis, I.B., Cahu, C., Kestemont, P., 2008. Effect of dietary phospholipid levels on performance, enzyme activities and fatty acid composition of pikeperch (Sander lucioperca) larvae. Aquaculture. 275(1-4), 274-282.
[25] AOAC., 2005. Official Method 950.89 Horwitz, W., Latimer, G. (Eds). Official Methods of Analysis of AOAC International, 18th Edition, Association of Official Analytical Chemists, Gaithersburg, USA.
[26] Zamani, A., Khajavi, M., Abedian Kenari, A., Haghbin Nazarpak, M., Solouk, A., Esmaeili, M., Gisbert, E., 2023. Physicochemical and Biochemical Properties of Trypsin-like Enzyme from Two Sturgeon Species. Animals. 13(5), 853.
[27] Walter, H.E., 1984. Proteinases: methods with hemoglobin, casein and azocoll as substrates. In: Bergmeyer, H.U. Ed. Methods of Enzymatic Analysis, vol. V. Verlag Chemie, Weinheim. 270–277.
[28] Bernfeld, P. Amylases α and β. In Methods in Enzymology; Colowick, P., Kaplan, N.O., Eds.; Academic Press: New York, NY, USA, 1951; Volume 1, pp. 149–157.
[29] Iijima, N., Tanaka, S., Ota, Y., 1998. Purification and characterization of bile salt-activated lipase from the hepatopancreas of red sea bream, Pagrus major. Fish Physiology and Biochemistry. 18, 59-69.
[30] Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., 1951. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry. 1951. 193, 265–275
[31] Gamboa‐Delgado, J., Márquez‐Reyes, J.M., 2018. Potential of microbial‐derived nutrients for aquaculture development. Reviews in Aquaculture. 10(1), 224-246.
[32] Hossain, M.S., Koshio, S., Kestemont, P., 2020. Recent advances of nucleotide nutrition research in aquaculture: a review. Reviews in Aquaculture. 12(2), 1028-1053.
[33] Storebakken, T., Baeverfjord, G., Skrede, A., Olli, J.J., Berge, G.M., 2004. Bacterial protein grown on natural gas in diets for Atlantic salmon, Salmo salar, in freshwater. Aquaculture. 241(1-4), 413-425.
[34] Aas, T.S., Hatlen, B., Grisdale‐Helland, B., Terjesen, B.F., Penn, M., Bakke‐McKellep, A.M., Helland, S.J., 2007. Feed intake, growth and nutrient utilization in Atlantic halibut (Hippoglossus hippoglossus) fed diets containing a bacterial protein meal. Aquaculture Research. 38(4), 351-360.
[35] Rhodes, M.A., Zhou, Y., Davis, D.A., 2015. Use of dried fermented biomass as a fish meal replacement in practical diets of Florida pompano, Trachinotus carolinus. Journal of Applied Aquaculture. 27(1), 29-39.
[36] Wei, H., Yu, H., Chen, X., Chao, W., Zou, F., Chen, P., Zheng, Y., Wu, X., Liang, X., Xue, M., 2018. Effects of soybean meal replaced by Clostridium autoethanogenum protein on growth performance, plasma biochemical indexes and hepatopancreas and intestinal histopathology of grass carp (Ctenopharyngodon idllus). Chinese Journal of Animal Nutrition. 30(10), 4190-4201.
[37] Chen, Y., Sagada, G., Xu, B., Chao, W., Zou, F., Ng, W.K., Sun, Y., Wang, L., Zhong, Z., Shao, Q., 2020. Partial replacement of fishmeal with Clostridium autoethanogenum single‐cell protein in the diet for juvenile black sea bream (Acanthopagrus schlegelii). Aquaculture Research. 51(3), 1000-1011.
[38] Yang, P., Li, X., Song, B., He, M., Wu, C., Leng, X., 2023. The potential of Clostridium autoethanogenum, a new single cell protein, in substituting fish meal in the diet of largemouth bass (Micropterus salmoides): Growth, feed utilization and intestinal histology. Aquaculture and Fisheries. 8(1), 67-75.
[39] Pluske, J.R., Thompson, M.J., Atwood, C.S., Bird, P.H., Williams, I.H., Hartmann, P.E., 1996. Maintenance of villus height and crypt depth, and enhancement of disaccharide digestion and monosaccharide absorption, in piglets fed on cows' whole milk after weaning. British Journal of Nutrition. 76(3), 409-422.
[40] Hassaan, M.S., El-Sayed, A.M.I., Mohammady, E.Y., Zaki, M.A., Elkhyat, M.M., Jarmołowicz, S., El-Haroun, E.R., 2021. Eubiotic effect of a dietary potassium diformate (KDF) and probiotic (Lactobacillus acidophilus) on growth, hemato-biochemical indices, antioxidant status and intestinal functional topography of cultured Nile tilapia Oreochromis niloticus fed diet free fishmeal. Aquaculture. 533, 736147.
[41] Huan, D., Li, X., Chowdhury, M.A.K., Yang, H., Liang, G., Leng, X., 2018. Organic acid salts, protease and their combination in fish meal‐free diets improved growth, nutrient retention and digestibility of tilapia (Oreochromis niloticus× O. aureus). Aquaculture Nutrition. 24(6), 1813-1821.
[42] Bolasina, S., Pérez, A., Yamashita, Y., 2006. Digestive enzymes activity during ontogenetic development and effect of starvation in Japanese flounder, Paralichthys olivaceus. Aquaculture. 252(2-4), 503-515.
[43] Navarro-Guillen, C., Yufera, M., Perera, E., 2022. Biochemical features and modulation of digestive enzymes by environmental temperature in the greater amberjack, Seriola dumerili. Frontiers in Marine Science. 9, 960746.
[44] Nyman, A., 2016. Single cell protein in fish feed: effects on gut microbiota. Licentiate Thesis, Swedish University of Agricultural Sciences, Uppsala.