1- Masciangioli, T., Zhang, W. 2003.Environmental technologies at the nanoscale, Environ. Sci. Technol.; 37(5): 102-108. https://doi.org/10.1021/es0323998
2- Scown, TM., Santos, EM., Johnston, BD., Gaiser, B. 2010.Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol. Sci.; 115(2): 521-534. https://doi.org/10.1093/toxsci/kfq076
3- Abbas, G., & Siddiqui, P. J. (2009). Effects of different feeding level on the growth, feed efficiency and body composition of juvenile mangrove red snapper, Lutjanus argentimaculatus (Forsskal 1775). Aquaculture Research, 40(7), 781-789. https://doi.org/10.1111/j.1365-2109.2008.02161.x
4- Mekkawy, IA., Mahmoud, UM., Sayed, AH. 2011.Effects of 4-nonylphenol on blood cells of the African catfish Clarias gariepinus (Burchell, 1822), Tissue and cell.; 43(4): 223-229. https://doi.org/10.1016/j.tice.2011.03.006
5- Parrino, V., Cappello, T., Costa, G., Cannavà, C., Sanfilippo, M., Fazio, F., & Fasulo, S. (2018). Comparative study of haematology of two teleost fish (Mugil cephalus and Carassius auratus) from different environments and feeding habits. The European Zoological Journal, 85(1), 193-199.https://doi.org/10.1080/24750263.2018.1460694
6- Davis, AK., Maney, DL., Maerz, JC. 2008.The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists, Fun. Ecol.; 22(5): 760-772.
https://doi.org/10.1111/j.1365-2435.2008.01467.x
7- Oliveira Ribeiro, C. A., Belger, L., Pelletier, E., & Rouleau, C. (2002). Histopathological evidence of inorganic mercury and methyl mercury toxicity in the arctic charr (Salvelinus alpinus). Environmental research, 90(3), 217-225. https://doi.org/10.1016/S0013-9351(02)00025-7
8- Zhao, J., Wang, Z., Liu, X., Xie, X., Zhang, K., Xing, B. 2011. Distribution of CuO nanoparticles in juvenile carp (Cyprinus carpio) and their potential toxicity. Journal of hazardous materials, 197, 304-310. https://doi.org/10.1016/j.jhazmat.2011.09.094
9- Houston, A. H. (1997). Are the classical hematological variables acceptable indicators of fish health? Transactions of the American Fisheries Society, 126(6), 879-894. https://doi.org/10.1577/1548-8659(1997)1262.3.CO;2
10- Fazio, F. (2019). Fish hematology analysis as an important tool of aquaculture: a review. Aquaculture, 500, 237-242. https://doi.org/10.1016/j.aquaculture.2018.10.030
11- Fayed, W. M., Khalil, R. H., Sallam, G. R., Mansour, A. T., Elkhayat, B. K., Omar, E. A. (2019). Estimating the effective level of Yucca schidigera extract for improvement of the survival, haematological parameters, immunological responses and water quality of European seabass juveniles (Dicentrarchus labrax). Aquaculture Reports, 15, 100208. https://doi.org/10.1016/j.aqrep.2019.100208
12- Felix, F. J., & Prabhu, F. C. M. (2018). Efficacy of Herbicide Glyphosate Hijack® on the Blood Parameters of the Freshwater Fish, Catla catla (HAM). Asian Journal of Biology, 1-10.https://doi.org/10.9734/ajob/2018/v7i230049
13- Harikrishnan, R., Rani, M. N., Balasundaram, C. (2003). Hematological and biochemical parameters in common carp, Cyprinus carpio, following herbal treatment for Aeromonas hydrophila infection. Aquaculture, 221(1-4), 41-50. https://doi.org/10.1016/S0044-8486(03)00023-1
14- Woo, S. J., Kim, N. Y., Kim, S. H., Ahn, S. J., Seo, J. S., Jung, S. H., ... & Chung, J. K. (2018). Toxicological effects of trichlorfon on hematological and biochemical parameters in Cyprinus carpio L. following thermal stress. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 209, 18-27. https://doi.org/10.1016/j.cbpc.2018.03.001
15- Narain, A.S., Srivastava, P.N. 1989. Anemia in the freshwater teleost. Heteropneustes fossilis under the stress of environmental pollution. J.Environmental Contamination and Toxicology. 627-634. https://doi.org/10.1007/BF01701945
16- Winkaler, E. U., Santos, T. R., Machado-Neto, J. G., & Martinez, C. B. (2007). Acute lethal and sublethal effects of neem leaf extract on the neotropical freshwater fish Prochilodus lineatus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 145(2), 236-244. https://doi.org/10.1016/j.cbpc.2006.12.009
17- Razavian, MH., Safarpour, E., Roshanai, K., Yazdian, MR. 2011.Study of Biochemical and hematological parameters changes of Wistar rats blood parallel to oral nanosilver consumption, J Babol Univ. Med. Sci.; 13(1): 22-27. http://jbums.org/article-1-3713-en.html
18- Das, P. C., Ayyappan, S., Jena, J. K. 2006. Haematological changes in the three Indian major carps, Catla catla, Labeo rohitaand Cirrhinus mrigalaexposed to acidic and alkaline water ph. J.Aquaculture.256:80-87. https://doi.org/10.1016/j.aquaculture.2006.02.019
19- Al-Asgah, N. A., Abdel-Warith, A. W. A., Younis, E. S. M., & Allam, H. Y. (2015). Haematological and biochemical parameters and tissue accumulations of cadmium in Oreochromis niloticus exposed to various concentrations of cadmium chloride. Saudi journal of biological sciences, 22(5), 543-550. https://doi.org/10.1016/j.sjbs.2015.01.002
20- Blahova, J., Modra, H., Sevcikova, M., Marsalek, P., Zelnickova, L., Skoric, M., & Svobodova, Z. (2014). Evaluation of biochemical, haematological, and histopathological responses and recovery ability of common carp (Cyprinus carpio L.) after acute exposure to atrazine herbicide. BioMed research international, 2014. https://doi.org/10.1155/2014/980948
21- Jahanbakhshi, A., Hedayati, A., Pirbeigi, A., & Javadimoosavi, M. (2015). Determination of acute toxicity and the effects of sub-acute concentrations of CuO nanoparticles on blood parameters in Rutilus rutilus. Nanomedicine Journal, 2(3), 195-202. http://eprints.mums.ac.ir/id/eprint/4417
22- Hedayati, A., & Tarkhani, R. (2014). Hematological and gill histopathological changes in iridescent shark, Pangasius hypophthalmus (Sauvage, 1878) exposed to sublethal diazinon and deltamethrin concentrations. Fish physiology and biochemistry, 40(3), 715-720. -3 https://doi.org/10.1007/s10695-013-9878
23- Remyla, S. R., Ramesh, M., Sajwan, K. S., & Kumar, K. S. (2008). Influence of zinc on cadmium induced haematological and biochemical responses in a freshwater teleost fish Catla catla. Fish physiology and biochemistry, 34(2), 169. https://doi.org/10.1007/s10695-007-9157-2
24- Wilson, J.M., Laurent, P. 2002. Fish Gill Morphology: Inside Out. JOURNAL OF EXPERI-MENTAL ZOOLOGY 293:192–213. https://doi.org/10.1002/jez.10124
25- Wu, Y., Zhou, Q. 2013. Silver nanoparticles cause oxidative damage and histological changes in medaka (Oryzias latipes) after 14 days of exposure. Environ. Toxicol. Chem. 32:165–173. https://doi.org/10.1002/etc.2038
26- Al-Bairuty, G. A., Shaw, B. J., Handy, R. D., & Henry, T. B. (2013). Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 126, 104-115.
https://doi.org/10.1016/j.aquatox.2012.10.005
27- Hao, L., & Chen, L. (2012). Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicology and environmental safety, 80, 103-110. https://doi.org/10.1016/j.ecoenv.2012.02.017
28- Bilberg, K., Malte, H., Wang, T., & Baatrup, E. (2010). Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquatic Toxicology, 96(2), 159-165. https://doi.org/10.1016/j.aquatox.2009.10.019
29- Van der Oost, R., Beyer, J., Vermeulen, N. P. E. 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review, Environ. Toxicol. Pharmacol.; 13: 57-149. https://doi.org/10.1016/S1382-6689(02)00126-6
30- Valerio-García, R. C., Carbajal-Hernández, A. L., Martínez-Ruíz, E. B., Jarquín-Díaz, V. H., Haro-Pérez, C., & Martínez-Jerónimo, F. (2017). Exposure to silver nanoparticles produces oxidative stress and affects macromolecular and metabolic biomarkers in the goodeid fish Chapalichthys pardalis. Science of the Total Environment, 583, 308-318. https://doi.org/10.1016/j.scitotenv.2017.01.070
31- Sayadi, M. H., Mansouri, B., Shahri, E., Tyler, C. R., Shekari, H., & Kharkan, J. (2020). Exposure effects of iron oxide nanoparticles and iron salts in blackfish (Capoeta fusca): Acute toxicity, bioaccumulation, depuration, and tissue histopathology. Chemosphere, 125900.https://doi.org/10.1016/j.chemosphere.2020.125900
32- Arellano, J. M., Storch, V., & Sarasquete, C. (1999). Histological changes and copper accumulation in liver and gills of the Senegales sole, Solea senegalensis. Ecotoxicology and Environmental Safety, 44(1), 62-72. https://doi.org/10.1006/eesa.1999.1801
33- Shaw, B. J., Al-Bairuty, G., Handy, R. D. 2012. Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss): physiology and accumulation. Aquat. Toxicol. 116: 90–101. https://doi.org/10.1016/j.aquatox.2012.02.032
34- Karlsson, N.L., Runn, P., Haux, C., Forlin, L. 1985. Cadmium induced changes in gill morphol-ogy of zebra fish, Brachydanio rerio and rainbow trout, Salmo gairdneri. J. Fish Biol. 27: 81-95. https://doi.org/10.1111/j.1095-8649.1985.tb04011.x
35- Kantham, K. P. L., Richards, R. H. (1995). Effect of buffers on the gill structure of common carp, Cyprinus carpio L., and rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of fish diseases, 18(5), 411-423. https://doi.org/10.1111/j.1365-2761.1995.tb00333.x
36- Au, D. W. T. 2004. The application of histo-cytopathological biomarkers in marine pollution mon-itoring: a review. Marine Pollution Bulletin. 48: 817–834.
https://doi.org/10.1016/j.marpolbul.2004.02.032