Volume 7, Issue 3 (2018)                   JFST 2018, 7(3): 175-184 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Babaei S, Abedian Kenari A, Hedayati M, Yazdani-Sadati M. Growth, Body Composition, and Fatty Acids Changes in Siberian Sturgeon during Starvation and Refeeding; Effect of Different Macronutrients Levels. JFST 2018; 7 (3) :175-184
URL: http://jfst.modares.ac.ir/article-6-15401-en.html
1- Natural Resources & Environment Department, Agriculture Faculty, Shiraz University, Shiraz, Iran
2- Aquaculture Department, Natural Resources & Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran , aabedian@modares.ac.ir
3- Cellular & Molecular Research Center, Research for Endocrine Sciences Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
4- Agricultural Research, Education & Extension Organization, Caspian Sea Sturgeon Institute, Rasht, Iran
Abstract:   (7570 Views)
Aims: In this study, the effect of dietary macronutrient composition (two levels of protein 44% and 38% with two carbohydrate/fatty ratios of 1.4 and 3) was studied during starvation and re-feeding with the aim of achieving growth, body composition, and fatty acids in the body of Siberian Sturgeon (Acipenser baerii, Brandt, 1869).
Materials & Methods: This experimental study was carried out at the International sturgeon research institute in a completely randomized design. 360 fish (with an initial weight of 30±5g) were randomly distributed in 24 tanks of 500 liters (15 fish per tank) with a volume of 350-400 liters capacity. Fish were fed on 4 different diets; protein 38% - carbohydrate: lipid ratio 3 (LP-St), protein 44% - carbohydrate: lipid ratio 3 (HP-St), protein 38% - carbohydrate: lipid ratio 1.4 (LP-L) and protein 44% - carbohydrate: lipid ratio 1.4 (HP-L), respectively. The fish were fed apparent satiation for 3 weeks, then, starved for two weeks, and, then, re-fed for 5 weeks. The results were analyzed, using SPSS 22 software by multivariate analysis of variance and Duncan's test.
Findings: Compensatory growth did not occur in any treatments. In the control group, the best growth was observed in HP-L, while after re-feeding, HP-St represented the best weight gain and feed conversion ratio
Conclusion: The dietary composition has a significant effect on the SFA, MUFA, and PUFA fatty acids, while the two weeks of starvation slightly increase only MUFA and have no significant effect on other fatty acids.
Full-Text [PDF 631 kb]   (1591 Downloads)    
Article Type: Research Article | Subject: fish and shellfish physiology
Received: 2017/12/16 | Published: 2018/09/22

1. Janssens PA. The metabolism of the aestivating African lungfish. Comp Biochem Physiol. 1964;11:105-17. [Link] [DOI:10.1016/0010-406X(64)90098-2]
2. Soengas JL, Strong EF, Fuentes J, Veira JA, Andrés MD. Food deprivation and refeeding in Atlantic salmon, Salmo salar: Effects on brain and liver carbohydrate and ketone bodies metabolism. Fish Physiol Biochem. 1996;15(6):491-511. [Link] [DOI:10.1007/BF01874923]
3. Mrosovsky N, Sherry DF. Animal anorexics. Science. 1980;207(4433):837-42. [Link] [DOI:10.1126/science.6928327]
4. Cherel Y, Robin JP, Le Maho Y. Physiology and biochemistry of long-term fasting in birds. Can J Zool. 1988;66(1):159-66. [Link] [DOI:10.1139/z88-022]
5. Randall JA, Boltas King DK. Assessment and defense of solitary kangaroo rats under risk of predation by snakes. Anim Behav. 2001;61(3):579-87. [Link] [DOI:10.1006/anbe.2000.1643]
6. Barboza PS, Jorde DG. Intermittent feeding in a migratory omnivore: Digestion and body composition of American black duck during autumn. Physiol Biochem Zool. 2001;74(2):307-17. [Link] [DOI:10.1086/319658]
7. Einen O, Mørkøre T, Bencze Rørå AM, Thomassen MS. Feed ration prior to slaughter - a potential tool for managing product quality of Atlantic salmon (Salmo salar). Aquaculture. 1999;178(1-2):149-69. [Link] [DOI:10.1016/S0044-8486(99)00126-X]
8. Davis KB, Gaylord TG. Effect of fasting on body composition and responses to stress in sunshine bass. Comp Biochem Physiol A Mol Integr Physiol. 2011;158(1):30-6. [Link] [DOI:10.1016/j.cbpa.2010.08.019]
9. Peres H, Santos S, Oliva-Teles A. Lack of compensatory growth response in gilthead seabream (Sparus aurata) juveniles following starvation and subsequent refeeding. Aquaculture. 2011;318(3-4):384-8. [Link] [DOI:10.1016/j.aquaculture.2011.06.010]
10. Méndez G, Wieser W. Metabolic responses to food deprivation and refeeding in juveniles of Rutilus rutilus (Teleostei: Cyprinidae). Environ Biol Fish. 1993;36(1):73-81. [Link] [DOI:10.1007/BF00005981]
11. Navarro I, Gutiérrez J. Fasting and starvation. In: Mommsen TP, Hochachka P, editors. Biochemistry and molecular biology of fishes (Metabolic biochemistry). 4th Volume. New York City: Elsevier Science; 1995. pp. 393-434. [Link]
12. Machado CR, Garofalo MA, Roselino JE, Kettelhut IC, Migliorini RH. Effects of starvation, refeeding, and insulin on energy-linked metabolic processes in catfish (Rhamdia hilarii) adapted to a carbohydrate-rich diet. Gen Comp Endocrinol. 1988;71(3):429-37. [Link] [DOI:10.1016/0016-6480(88)90272-9]
13. Ritar AJ, Dunstan GA, Crear BJ, Brown MR. Biochemical composition during growth and starvation of early larval stages of cultured spiny lobster (Jasus edwardsii) phyllosoma. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(2):353-70. [Link] [DOI:10.1016/S1095-6433(03)00167-3]
14. Dave G, Johansson-Sjöbeck ML, Larsson A, Lewander K, Lidman U. Metabolic and hematological effects of starvation in the European eel, Anguilla anguilla L.--III. Fatty acid composition. Comp Biochem Physiol B. 1976;53(4):509-15. [Link] [DOI:10.1016/0305-0491(76)90208-X]
15. Jezierska B, Hazel JR, Gerking SD. Lipid mobilization during starvation in the rainbow trout, Salmo gairdneri Richardson, with attention to fatty acids. J Fish Biol. 1982;21(6):681-92. [Link] [DOI:10.1111/j.1095-8649.1982.tb02872.x]
16. Zamal H, Ollevier F. Effect of feeding and lack of food on the growth, gross biochemical and fatty acid composition of juvenile catfish. J Fish Biol. 1995;46(3):404-14. [Link] [DOI:10.1111/j.1095-8649.1995.tb05980.x]
17. Bagherzadeh Lakani F, Sattari M, Sharifpour I, Kazemi R. Effect of hypoxia, normoxia and hyperoxia conditions on gill histopathology in two weight groups of beluga (Huso huso). Casp J Environ Sci. 2013;11(1):77-84. [Link]
18. National Research Council. Nutrient requirements of warm water fishes and shellfishes. Washington: National Academy Press. 225 p. [Link]
19. Dabrowski K, Kaushik SJ, Fauconneau B. Rearing of sturgeon (Aipenser baerii Brandt) larvae: I. Feeding trial. Aquaculture. 1985;47(2-3):185-92. [Link] [DOI:10.1016/0044-8486(85)90064-X]
20. Kaushik SJ, Luquet P, Blanc D, Paba A. Studies on the nutrition of Siberian sturgeon, Acipenser baeri: I. Utilization of digestible carbohydrates by sturgeon. Aquaculture. 1989;76(1-2):97-107. [Link] [DOI:10.1016/0044-8486(89)90254-8]
21. Fontagné S, Bazin D, Brèque J, Vachot C, Bernarde C, Rouault T, et al. Effects of dietary oxidized lipid and vitamin A on the early development and antioxidant status of Siberian sturgeon (Acipenser baeri) larvae. Aquaculture. 2006;257(1-4):400-11. [Link] [DOI:10.1016/j.aquaculture.2006.01.025]
22. Guo Z, Zhu X, Liu J, Han D, Yang Y, Lan Z, et al. Effects of dietary protein level on growth performance, nitrogen and energy budget of juvenile hybrid sturgeon, Acipenser baerii ♀ × A . gueldenstaedtii ♂. Aquaculture. 2012;338-341:89-95. [Link] [DOI:10.1016/j.aquaculture.2012.01.008]
23. Mohanta KN, Mohanty SN, Jena JK, Sahu NP. Optimal dietary lipid level of silver barb, Puntius gonionotus fingerlings in relation to growth, nutrient retention and digestibility, muscle nucleic acid content and digestive enzyme activity. Aquac Nutr. 2008;14(4):350-9. [Link] [DOI:10.1111/j.1365-2095.2007.00542.x]
24. Fuentes EN, Kling P, Einarsdottir IE, Alvarez M, Valdés JA, Molina A, et al. Plasma leptin and growth hormone levels in the fine flounder (Paralichthys adspersus) increase gradually during fasting and decline rapidly after refeeding. Gen Comp Endocrinol. 2012;177(1):120-7. [Link] [DOI:10.1016/j.ygcen.2012.02.019]
25. Yarmohammadi M, Shabani A, Pourkazemi M, Soltanloo H, Imanpour MR. Effects of starvation and re-feeding on growth performance and content of plasma lipids, glucose and insulin in cultured juvenile Persian sturgeon (Acipenser persicus, Borodin, 1897). J Appl Ichthyol. 2012;28(5):692-6. [Link] [DOI:10.1111/j.1439-0426.2012.01969.x]
26. Pérez-Jiménez A, Hidalgo MC, Morales AE, Arizcun M, Abellán E, Cardenete G. Growth performance, feed utilization and body composition of Dentex dentex fed on different macronutrient combinations. Aquac Res. 2009;41(1):111-9. [Link] [DOI:10.1111/j.1365-2109.2009.02312.x]
27. AOAC, AOAC International. Official methods of analysis of the AOAC international. 18th Edition. Horwitz W, Latimer GW, editors. Rockville: AOAC International; 2006. [Link]
28. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226(1):497-509. [Link]
29. American Oil Chemists' Society, Firestone D. Official methods and recommended practices of the AOCS. 5th Edition. Firestone D, editor. Urbana: American Oil Chemists' Society; 1998. [Link]
30. Babaei S, Abedian Kenari A, Hedayati M, Yazdai Sadati MA. Growth response, body composition, plasma metabolites, digestive and antioxidant enzymes activities of Siberian sturgeon (Acipenser baerii, Brandt, 1869) fed different dietary protein and carbohydrate: Lipid ratio. Aquac Res. 2017;48(6):2642-54. [Link] [DOI:10.1111/are.13096]
31. Babaei S, Abedian Kenari A, Hedayati M, Yazdani Sadati MA, Metón I. Effect of diet composition on growth performance, hepatic metabolism and antioxidant activities in Siberian sturgeon (Acipenser baerii, Brandt, 1869) submitted to starvation and refeeding. Fish Physiol Biochem. 2016;42(6):1509-20. [Link] [DOI:10.1007/s10695-016-0236-0]
32. Morshedi V, Kochanian P, Bahmani M, Yazdani-Sadati MA, Pourali HR, Ashouri G, et al. Compensatory growth in sub-yearling Siberian sturgeon, Acipenser baerii Brandt, 1869: Effects of starvation and refeeding on growth, feed utilization and body composition. J Appl Ichthyol. 2013;29(5):978-83. [Link] [DOI:10.1111/jai.12257]
33. Erfanullah, K Jafri A. Effect of dietary carbohydrate-to-lipid ratio on growth and body composition of walking catfish (Clarias batrachus). Aquaculture. 1998;161(1-4):159-68. [Link] [DOI:10.1016/S0044-8486(97)00267-6]
34. Regost C, Arzel J, Cardinal M, Laroche M, Kaushik SJ. Fat deposition and flesh quality in seawater reared, triploid brown trout (Salmo trutta) as affected by dietary fat levels and starvation. Aquaculture. 2001;193(3-4):325-45. [Link] [DOI:10.1016/S0044-8486(00)00498-1]
35. Moraes G, Altran AE, Avilez IM, Barbosa CC, Bidinotto PM. Metabolic adjustments during semi-aestivation of the marble swamp eel (Synbranchus marmoratus, Bloch 1795)-- a facultative air breathing fish. Braz J Biol. 2005;65(2):305-12. [Link] [DOI:10.1590/S1519-69842005000200015]
36. Murata H, Higashi T. Selective utilization of fatty acid as energy source in carp. Bull Jpn Soc Sci Fish. 1980;46(11):1333-8. [Japanese] [Link] [DOI:10.2331/suisan.46.1333]
37. Soivio A, Niemistö M, Bäckström M. Fatty acid composition of Coregonus muksun Pallas: Changes during incubation, hatching, feeding and starvation. Aquaculture. 1989;79(1-4):163-8. [Link] [DOI:10.1016/0044-8486(89)90457-2]
38. Tidwell JH, Webster CD, Clark JA. Effects of feeding, starvation, and refeeding on the fatty acid composition of channel catfish, ICtalurus punctatus, tissues. Comp Biochem Physiol A Physiol. 1992;103(2):365-8. [Link] [DOI:10.1016/0300-9629(92)90595-H]
39. Lehninger AL. Biochemistry. 2nd Edition. New York City: Worth Publishers; 1970. [Link]
40. Mead JF, Fulco AJ. The unsaturated and polyunsaturated fatty acids in health and disease. Springfield: Thomas; 1976. [Link]
41. Brockerhoff H, Ackman RG, Hoyle RJ. Specific distribution of fatty acids in marine lipids. Arch Biochem Biophys. 1963;100:9-12. [Link] [DOI:10.1016/0003-9861(63)90026-2]
42. Tidwell JH, Randall Robinette H. Changes in proximate and fatty acid composition of fillets from channel catfish during a two-year growth period. Transact Am Fish Soc. 1990;119(1):31-40. https://doi.org/10.1577/1548-8659(1990)119<0031:CIPAFA>2.3.CO;2 [Link] [DOI:10.1577/1548-8659(1990)1192.3.CO;2]

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.